
線形計画問題

　制約条件が 1次の等式あるいは不等式で表され

るときに，1 次関数である目的関数を最大化（あ

るいは最小化）する問題．

講義内容

LP1 線形計画問題による定式化の例

LP2 諸定義（可能解，最適解，標準形，基底解，

基底変数，非基底変数，基底可能解）

LP3 シンプレックス法

－－－－－－－－－－－－－－－－－－

LP1　線形計画問題による定式化の例

［例 1］

• 3種類の材料 1 ∼ 3から 2種類の商品 1, 2を

作る．

• 商品 jを 1単位作るのに，材料 iが aij だけ必

要 (i = 1, 2, 3, j = 1, 2)．

• 材料 iの使用可能量は全部で bi．

• 商品 j の 1単位あたりの売り上げは cj．

• 総売り上げを最大にしたい．

－－－－－－－－－－－－－－－－－－

各商品 j を xj 単位作るものとする（j = 1, 2）．

x1 ≥ 0, x2 ≥ 0.

• 商品 j を 1単位作るのに，材料 iが aij 必要．

⇒ xj 単位作るのに，材料 iが aijxj 必要．

• 材料 iの使用可能量は全部で bi．

⇒ 商品 1, 2のための使用量の和を考えると，

　　　 ai1x1 + ai2x2 ≤ bi. (i = 1, 2, 3)

• 商品 j の 1単位あたりの売り上げは cj．

⇒ 総売り上げは c1x1 + c2x2．

－－－－－－－－－－－－－－－－－－

結局，以下の問題を解けばよいことになる．

a11x1 + a12x2 ≤ b1,

a21x1 + a22x2 ≤ b2,

a31x1 + a32x2 ≤ b3,

x1 ≥ 0, x2 ≥ 0

という制約条件のもとで，目的関数

c1x1 + c2x2

を最大にするような x1, x2 を求めよ．

－－－－－－－－－－－－－－－－－－

A =


a11 a12

a21 a22

a31 a32

 , x =

[
x1

x2

]
,

b =


b1

b2

b3

 , c =

[
c1

c2

]

とおくと，

目的関数：cT x −→最大
制約条件：Ax ≤ b, x ≥ 0

と書くことができる（T は転置を表す）．

－－－－－－－－－－－－－－－－－－

［例 2］

• 4 種類の食品 F1 ∼ F4 から 3 種類の栄養素

N1 ∼ N3 をとる．

• 1 単位の食品 Fj には，栄養素 Ni が aij 含ま

れる (i = 1, 2, 3, j = 1, 2, 3, 4)．

• 栄養素Ni の最低必要量は bi．

• 1単位の食品 Fj の価格は cj．

• 総費用を最小にして，最低限必要な栄養素を
とりたい．

－－－－－－－－－－－－－－－－－－
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各食品 Fj を xj 単位買うものとする．

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

• 1単位の食品 Fj には，Ni が aij 含まれる．

⇒ xj 単位には，Ni が aijxj 含まれる．

• 栄養素 Ni の最低必要量は bi．

⇒ 4種類の食品中のNi の量を考えると，

　 ai1x1 + ai2x2 + ai3x3 + ai4x4 ≥ bi.

• 1単位の食品 Fj の価格は cj．

⇒ 総費用は c1x1 + c2x2 + c3x3 + c4x4．

－－－－－－－－－－－－－－－－－－

以下の問題を解けばよいことになる．

a11x1 + a12x2 + a13x3 + a14x4 ≥ b1,

a21x1 + a22x2 + a23x3 + a24x4 ≥ b2,

a31x1 + a32x2 + a33x3 + a34x4 ≥ b3,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0

という制約条件のもとで，目的関数

c1x1 + c2x2 + c3x3 + c4x4

を最小にするような x1, x2, x3, x4 を求めよ．

－－－－－－－－－－－－－－－－－－

　A =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

 , x =


x1

x2

x3

x4

,

　 b =


b1

b2

b3

 , c =


c1

c2

c3

c4


とおくと，

目的関数：cT x −→最小
制約条件：Ax ≥ b, x ≥ 0

となる．

－－－－－－－－－－－－－－－－－－

LP2　諸定義

LP2.1　可能解と最適解

• 実行可能解，可能解（feasible solution）：全て

の制約条件を満たすベクトル

• 可能領域（feasible region）：可能解全体の集合

• 最適解（optimum solution）：最大化問題の場

合，全ての可能解の中で目的関数の値を最大

にするもの．最小化問題の場合，全ての可能

解の中で目的関数の値を最小にするもの．

－－－－－－－－－－－－－－－－－－

［例 3］

制約条件

　 x1 + 2x2 ≤ 14

　 x1 + x2 ≤ 8

　 3x1 + x2 ≤ 18

　 x1 ≥ 0, x2 ≥ 0

目的関数

　 2x1 + x2 → 最大
x10 6 8

7

8

x1 + 2x2 = 14

3x1 + x2 = 18

x1 + x2 = 8

x2

可能領域

K
△
= 2x1 + x2 とおく ⇒ x2 = −2x1 + K．

Kの値をいろいろ変

えて，傾き −2の直

線を書き込むと，可

能領域を通るものの

中でKの値が最大に

なるのは

　 x2 = −2x1 + 13．
x10 6 8

7

x2

(5, 3)

x2 = −2x1 + 13

この直線は，可能領域内の点 (5, 3)を通るので，最

適解は (x1, x2) = (5, 3)．

－－－－－－－－－－－－－－－－－－
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［例 4］

制約条件

　 x1 + 2x2 ≥ 6

　 −x1 + x2 ≥ −3

　 3x1 + x2 ≥ 6

　 x1 ≥ 0, x2 ≥ 0

目的関数

　 x1 + x2 → 最小

x1
0

6

3

3 6

x2

3x1 + x2 = 6

−x1 + x2 = −3

x1 + 2x2 = 6

可能領域

K
△
= x1 + x2 とおく ⇒ x2 = −x1 + K．

例 3と同様に，傾き

−1 の直線を考える

と，可能領域を通る

ものの中でKの値が

最小になるのは

　 x2 = −x1 + 3.6．

この直線は，可能領

域内の点 (1.2, 2.4)

x10

6

x2

3.6

x2 = −x1 + 3.6

(1.2, 2.4)

を通るので，最適解は (x1, x2) = (1.2, 2.4)．

－－－－－－－－－－－－－－－－－－

LP2.2　標準形

　以下の形式を標準形（standard form）と呼ぶ．

目的関数：cT x −→最小
制約条件：Ax = b, x ≥ 0

x：変数の n 次元ベクトル

A：m × n 定数行列

b：m 次元定数ベクトル

c：n 次元定数ベクトル

－－－－－－－－－－－－－－－－－－

非標準形を標準形に直すことは容易にできる．

(1) 不等式制約条件がある場合

　 x1 + 2x2 ≤ 14, x1 + x2 ≤ 8,

　 3x1 + x2 ≤ 18, x1 ≥ 0, x2 ≥ 0

　　　　　　　　 ⇓
　 x1 + 2x2+x3 = 14, x1 + x2+x4 = 8,

　 3x1 + x2+x5 = 18,

　 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0

このような変数 x3, x4, x5 のことをスラック

変数（slack variable）と呼ぶ．

－－－－－－－－－－－－－－－－－－

　 x1 + 2x2 ≥ 6, −x1 + x2 ≥ −3,

　 3x1 + x2 ≥ 6, x1 ≥ 0, x2 ≥ 0

　　　　　　　　 ⇓
　 x1 + 2x2−x3 = 6, −x1 + x2−x4 = −3,

　 3x1 + x2−x5 = 6,

　 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0

このような変数 x3, x4, x5 のことを剰余変数

（surplus variable）と呼ぶ．

－－－－－－－－－－－－－－－－－－

(2) 非負条件がない変数がある場合

そのような各変数 xiに対して，二つの非負変

数 x′
i, x

′′
i を作り，xiを x′

i − x′′
i で置き換える．

(3) 最大化問題である場合

次の例のように，cT xの最大化は (−c)T xの

最小化に変える．

　　 2x1 + x2 → 最大

　　　　　 ⇓
　　 −2x1 − x2 → 最小

－－－－－－－－－－－－－－－－－－

［例 5］例 3の問題を標準形に直すと，以下のよう

になる．

目的関数：cT x −→最小
制約条件：Ax = b, x ≥ 0

ただし，

　A =


1 2 1 0 0

1 1 0 1 0

3 1 0 0 1

 , x =



x1

x2

x3

x4

x5


,

　 b =


14

8

18

 , c =



−2

−1

0

0

0


－－－－－－－－－－－－－－－－－－
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標準形に関して，次の二つの仮定をする．

• n > m．すなわち，変数の個数は，変数の非

負条件以外の制約条件の個数より大きい．

• 制約条件の中に，他の条件式を組み合わせて
得られるような冗長なものがない．

これ以降，上記の仮定を満たすような，標準形の

線形計画問題について考える．

－－－－－－－－－－－－－－－－－－

LP2.3　基底解，基底可能解

目的関数：cT x −→最小
制約条件：Ax = b, x ≥ 0

• ベクトルxの n個の成分 xj (j = 1, 2, · · · , n)

を，m個と n−m個のグループに分け，それ

ぞれのグループについて，成分を並べたベク

トルをxB, xNと表す．

• そのグループ分けに対応して，Aをm×m行

列とm× (n−m)行列に分けたものを，それ

ぞれ，B, Nと表す．

－－－－－－－－－－－－－－－－－－

［例 6］例 5の問題におけるxの 5 (= n)個の成分

を，3 (= m)個の成分 x1, x3, x4と 2 (= n−m)個

の成分 x2, x5 に分けたとすると，xB, xN , B, N

は以下のようになる．

　 xB =


x1

x3

x4

 , xN =

[
x2

x5

]
,

　B =


1 1 0

1 0 1

3 0 0

 , N =


2 0

1 0

1 1



　

A =


1 2 1 0 0

1 1 0 1 0

3 1 0 0 1




－－－－－－－－－－－－－－－－－－

• 制約条件Ax = bは

　　　　　BxB + NxN = b

と書き直すことができる．

xN = 0 とおくと，BxB = b．よって，こ

のとき，Bが正則であれば，xBの値は一意に

xB = B−1bと定まる．

このようにして得られる特殊な解を基底解

（basic solution）と呼ぶ．

また，xBの各成分を基底変数（basic vari-

able），xNの各成分を非基底変数（nonbasic

variable）という．

－－－－－－－－－－－－－－－－－－

［例 7］例 5の問題において，

xN =

[
x2

x5

]
=

[
0

0

]

とすると，

BxB =


1 1 0

1 0 1

3 0 0

 ·


x1

x3

x4

 =


14

8

18


この方程式を解くと，x1 = 6, x3 = 8, x4 = 2．こ

れに x2 = 0, x5 = 0 をあわせたものが一つの基底

解をなす．

－－－－－－－－－－－－－－－－－－

xN =

[
x1

x4

]
=

[
0

0

]

とすると，

BxB =


2 1 0

1 0 0

1 0 1

 ·


x2

x3

x5

 =


14

8

18


これを解くと，x2 = 8, x3 = −2, x5 = 10．よっ

て，(x1, x2, x3, x4, x5) = (0, 8,−2, 0, 10)は一つの

基底解．ただし，これは可能解ではない．

－－－－－－－－－－－－－－－－－－
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• 一般に，可能解は無限に存在するが，基底解
の個数は有限（高々nCm 個）．

• 基底解は可能解であるとは限らない．基底解の
うち，可能解でもあるものを基底可能解（basic

feasible solution）と呼ぶ．

　次の定理が成立する（証明は省略）．

［定理］線形計画問題が最適解をもつならば，基底

可能解の中に最適解が存在する．

－－－－－－－－－－－－－－－－－－

［例 8］例 5の問題の場合，以下のように，基底解

は 5C3 = 10個ある．

基底可能解（可能領域の頂点に対応）

(x1, x2, x3, x4, x5) = (0, 0, 14, 8, 18), (0, 7, 0, 1, 11),

　　 (6, 0, 8, 2, 0), (2, 6, 0, 0, 6), (5, 3, 3, 0, 0)

可能解でない基底解

(x1, x2, x3, x4, x5) = (0, 8,−2, 0, 10),

　　 (0, 18,−22,−10, 0), (14, 0, 0,−6,−24),

　　 (8, 0, 6, 0,−6), (22/5, 24/5, 0,−6/5, 0)

x5 = 0
(3x1 + x2 = 18)

x3 = 0
(x1 + 2x2 = 14)

(0, 7, 0, 1, 11)
に対応

に対応
(0, 0, 14, 8, 18)

(6, 0, 8, 2, 0)
に対応

(2, 6, 0, 0, 6)
に対応

0 8

8

x2

x2 = 0
x1

6

7

x1 = 0

x4 = 0
(x1 + x2 = 8)

に対応
(5, 3, 3, 0, 0)

－－－－－－－－－－－－－－－－－－

LP3　シンプレックス法

　標準形の線形計画問題の最適解をシンプレックス

法（simplex method）により求める手順について，

例５の問題を例として用いながら説明していく．

［シンプレックス法の概略］

Step.1： 基底可能解を一つ見つける．

Step.2： この基底可能解が最適解かどうかの判

定を行う．最適解であれば終了．

Step.3： より良い基底可能解を求め，Step.2 へ

行く．

－－－－－－－－－－－－－－－－－－

Step.1　最初の基底可能解を見つける．

• 一般の問題に対する方法は必ずしも自明なも
のではないが，ここでは省略する．

• （変数の非負条件以外の）各制約条件がスラッ
ク変数を含んでいる場合などには，このステッ

プは簡単に実行することができる．

－－－－－－－－－－－－－－－－－－

［例 9］例 5で述べた問題は以下のとおり．¶ ³
制約条件

　 x1 + 2x2 + x3 = 14

　 x1 + x2 + x4 = 8

　 3x1 + x2 + x5 = 18

　 x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0

目的関数：−2x1 − x2 → 最小µ ´
この場合，(x1, x2, x3, x4, x5) = (0, 0, 14, 8, 18)は

基底可能解である．

この基底可能解に対し，xB, xN , B, Nは以下の

ようになる．

xB =


x3

x4

x5

 , xN =

[
x1

x2

]
,

B =


1 0 0

0 1 0

0 0 1

 , N =


1 2

1 1

3 1


－－－－－－－－－－－－－－－－－－
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Step.2　基底可能解の最適性の判定

　　　　　　BxB + NxN = b

であるので，

xB = B−1b − B−1NxN

である（基底変数を非基底変数の関数として表し

ている）．これにより，目的関数を，非基底変数

のみの関数として表すことができる．

－－－－－－－－－－－－－－－－－－

xの（xBとxN への）分割に対応して，目的関数

の係数ベクトルcも，cBとcNに分割する．

cT x = cB
T xB + cN

T xN

= cB
T B−1b + (cN

T − cB
T B−1N)xN

= z0 + Σj∈NS (cj − zj)xj

ただし，ここで

　 z0 = cB
T B−1b：現在の基底可能解に対する目

的関数値，

　NS：非基底変数の添字の集合，

　 zj = cB
T B−1aj（ajは行列Aの第 j 列ベクト

ル）．

cT
BB−1

N

1 × m

m × (n − m)

·

aj1
aj2

－－－－－－－－－－－－－－－－－－

cT x = z0 + Σj∈NS (cj − zj)xj

各 j ∈ NSについて，cj − zj は，非基底変数 xj の

変化に対する目的関数の変化率を示す．

すべての j ∈ NS について cj − zj ≥ 0であると

き，任意の可能解をx′，その目的関数値を z′とす

ると，

z′ = z0 + Σj∈NS (cj − zj)xj ≥ z0.

よって，現在の基底可能解は最適解である．

－－－－－－－－－－－－－－－－－－

Step.3　解の改良

　 cj − zj < 0であるような値 j ∈ NSが存在する

とき，それらのうち，cj − zj が最小となるものを

一つ選んで pとする．

　 xp以外の非基底変数の値を 0のままにしておい

て，xpの値を 0から∆ (≥ 0)に増加させることに

より，目的関数の値を

　　　　　　　 (zp − cp)∆

だけ減少させ得る．∆の値は，可能解でなくなら

ない範囲で，最大になるように決める．

（これにより，xpは基底変数に変わり，他のある

変数が非基底変数に加わる．）

Step.2に戻る．

－－－－－－－－－－－－－－－－－－

（例 9の続き）

Step.2（1回目）

　例 5 で述べた問題と基底可能解 (x1, x2, x3, x4,

x5) = (0, 0, 14, 8, 18)に対して，目的関数 zは

z = −2x1 − x2 (1)

（この場合 z0 = 0）．x1, x2のいずれの係数も負で

あるから，最適解ではない．

－－－－－－－－－－－－－－－－－－

Step.3（1回目）

　 p = 1とする（p1を基底変数に変えていく）．基

底変数 x3, x4, x5 を非基底変数 x1, x2 で表すと，

x3 = 14 − x1 − 2x2, (2)

x4 = 8 − x1 − x2, (3)

x5 = 18 − 3x1 − x2 (4)

となる．よって，x2 = 0としたまま，x1 (= xp)

の値を∆ (> 0)まで増加させると，

　 x3 = 14 − ∆, x4 = 8 − ∆, x5 = 18 − 3∆

となる．

x3 ≥ 0, x4 ≥ 0, x5 ≥ 0である範囲で ∆の値を

最大にするので，

∆ = 6.

33



これにより，新しい基底可能解

(x1, x2, x3, x4, x5) = (6, 0, 8, 2, 0)

が得られる．このときの目的関数値は−12．x1が基

底変数に加わり，x5が非基底変数に変わっている．

x5 = 0
(3x1 + x2 = 18)

x3 = 0
(x1 + 2x2 = 14)

(0, 7, 0, 1, 11)
に対応

に対応
(0, 0, 14, 8, 18)

(6, 0, 8, 2, 0)
に対応

(2, 6, 0, 0, 6)
に対応

0 8

8

x2

x2 = 0
x1

6

7

x1 = 0

x4 = 0

に対応
(5, 3, 3, 0, 0)

1回目のStep.3

－－－－－－－－－－－－－－－－－－

Step.2（2回目）

　式 (4)を変形して

x1 = 6 − 1
3
x2 −

1
3
x5 (5)

を得る．これを式 (1)に代入すると，

z = −12 − 1
3
x2 +

2
3
x5 (6)

となる．x2の係数が負であるから，最適解ではない．

－－－－－－－－－－－－－－－－－－

Step.3（2回目）

　 p = 2とする．式 (5)を式 (2), (3)の右辺に代入

し，整理すれば

x3 = 8 − 5
3
x2 +

1
3
x5 (7)

x4 = 2 − 2
3
x2 +

1
3
x5 (8)

となる．式 (5), (7), (8)において，x2 = ∆, x5 = 0

とすると，

x1 = 6 − 1
3
∆, x3 = 8 − 5

3
∆, x4 = 2 − 2

3
∆

となる．

x1 ≥ 0, x3 ≥ 0, x4 ≥ 0である範囲で ∆の値を

最大にするので，

∆ = 3.

これにより，新しい基底可能解

(x1, x2, x3, x4, x5) = (5, 3, 3, 0, 0)

が得られる．このときの目的関数値は−13．x2が基

底変数に加わり，x4が非基底変数に変わっている．

x5 = 0
(3x1 + x2 = 18)

x3 = 0
(x1 + 2x2 = 14)

(0, 7, 0, 1, 11)
に対応

に対応
(0, 0, 14, 8, 18)

(6, 0, 8, 2, 0)
に対応

(2, 6, 0, 0, 6)
に対応

2回目の
Step.3

0 8

8

x2

x2 = 0
x1

6

7

x1 = 0

x4 = 0

に対応
(5, 3, 3, 0, 0)

1回目のStep.3

－－－－－－－－－－－－－－－－－－

Step.2（3回目）

　式 (8)を変形して

x2 = 3 − 3
2
x4 +

1
2
x5 (9)

を得る．これを式 (6)に代入すると，

z = −13 +
1
2
x4 +

1
2
x5 (10)

となる．x4, x5のいずれの係数も非負であるから，

(x1, x2, x3, x4, x5) = (5, 3, 3, 0, 0)

は最適解である．終了．

－－－－－－－－－－－－－－－－－－
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