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ABSTRACT. Let K f be an ab initio amalgamation class with an unbounded increasing
concave function f . We show that if the predimension function has a rational coefficient
and f satisfies a certain assumption then the generic structure of K f has a model complete
theory.
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1. INTRODUCTION

Generic structures constructed by the Hrushovski’s amalgamation construction are
known to have theories which are nearly model complete. If an amalgamation class has the
full amalgamation property then its generic structure has a theory which is not model com-
plete [2]. On the other hand, Hrushovski’s strongly minimal structure constructed by the
amalgamation construction, refuting a conjecture of Zilber has a model complete theory
[5].

We have shown that the generic structure of K f for 3-hypergraphs with a coefficient 1
for the predimension function has a model complete theory under some assumption on f
[8].

In this paper, we show a similar result for binary graphs with a rational coefficient less
than 1 for the predimension function. We have already shown this result for the predimen-
sion function with coefficient 1/2 [9]. We treat the general case here.

We essentially use notation and terminology from Baldwin-Shi [3] and Wagner [11].
We also use some terminology from graph theory [4].

For a set X , [X ]n denotes the set of all subsets of X of size n, and |X | the cardinality of
X .

We recall some of the basic notions in graph theory we use in this paper. These appear
in [4]. Let G be a graph. V (G) denotes the set of vertices of G and E(G) the set of edges
of G. E(G) is a subset of [V (G)]2. For a,b ∈V (G), ab denotes {a,b}. |G| denotes |V (G)|.
The degree of a vertex v is the number of edges at v. A vertex of degree 0 is isolated. A
vertex of degree 1 is a leaf. G is a path x0x1 . . .xk if V (G) = {x0,x1, . . . ,xk} and E(G) =
{x0x1,x1x2, . . . ,xk−1xk} where the xi are all distinct. x0 and xk are ends of G. The number of
edges of a path is its length. A path of length 0 is a single vertex. G is a cycle x0x1 . . .xk−1x0
if k ≥ 3, V (G) = {x0,x1, . . . ,xk−1} and E(G) = {x0x1,x1x2, . . . ,xk−2xk−1,xk−1x0} where
the xi are all distinct. The number of edges of a cycle is its length. A non-empty graph G
is connected if any two of its vertices are linked by a path in G. A connected component
of a graph G is a maximal connected subgraph of G. A forest is a graph not containing any
cycles. A tree is a connected forest.
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To see a graph G as a structure in the model theoretic sense, it is a structure in language
{E} where E is a binary relation symbol. V (G) will be the universe, and E(G) will be the
interpretation of E. The language {E} will be called the graph language.

Suppose A is a graph. If X ⊆ V (A), A|X denotes the substructure B of A such that
V (B) = X . If there is no ambiguity, X denotes A|X . We usually follow this convention.
B⊆ A means that B is a substructure of A. A substructure of a graph is an induced subgraph
in graph theory. A|X is the same as A[X ] in Diestel’s book [4].

We say that X is connected in A if X is a connected graph in the graph theoretical sense
[4]. A maximal connected substructure of A is a connected component of A.

Let A, B, C be graphs such that A ⊆C and B ⊆C. AB denotes C|(V (A)∪V (B)), A∩B
denotes C|(V (A)∩V (B)), and A − B denotes C|(V (A)−V (B)). If A ∩ B = /0, E(A,B)
denotes the set of edges xy such that x ∈ A and y ∈ B. We put e(A,B) = |E(A,B)|. E(A,B)
and e(A,B) depend on the graph in which we are working. When we are working in a
graph G, we sometimes write EG(A,B) and eG(A,B) respectively.

Let D be a graph and A, B, and C substructures of D. We write D = B⊗A C if D = BC,
B∩C = A, and E(D) = E(B)∪E(C). E(D) = E(B)∪E(C) means that there are no edges
between B−A and C−A. D is called a free amalgam of B and C over A. If A is empty, we
write D = B⊗C, and D is also called a free amalgam of B and C.

Definition 1. Let α be a real number such that 0 < α < 1.

(1) For a finite graph A, we define a predimension function δ by δ (A)= |A|−α|E(A)|.
(2) Let A and B be substructures of a common graph. Put δ (A/B) = δ (AB)−δ (B).

Definition 2. Let A and B be graphs with A ⊆ B, and suppose A is finite.
A ≤ B if whenever A ⊆ X ⊆ B with X finite then δ (A)≤ δ (X).
A < B if whenever A ⊊ X ⊆ B with X finite then δ (A)< δ (X).
We say that A is closed in B if A < B.

If α is irrational then ≤ and < are the same relations, but they are different if α is a
rational number. Our relation < is often denoted by ⩽ in the literature and some people
use ≤∗ for our <. Since we want to use the relation ≤ as well, we use the symbol < for
the closed substructure relation.

Let Kα be the class of all finite graphs A such that /0 < A.
The following facts appear in [3, 11, 12].

Fact 1. Let A, B, C be finite substructures in a common graph.

(1) If A∩C is empty then δ (A/C) = δ (A)−αe(A,C).
(2) If A∩C is empty and B ⊆C then δ (A/B)≥ δ (A/C).
(3) A ≤ B if and only if δ (X/A)≥ 0 for any X ⊆ B.
(4) A < B if and only if δ (X/A)> 0 for any X ⊆ B with X −A non-empty.
(5) A ≤ A.
(6) If A ≤ B then A∩C ≤ B∩C.
(7) If A ≤ B and B ≤C then A ≤C.
(8) If A ≤C and B ≤C then A∩B ≤C.
(9) A < A.

(10) If A < B then A∩C < B∩C.
(11) If A < B and B <C then A <C.
(12) If A <C and B <C then A∩B <C.

Proof. (1), (3), (4), (5) and (9) are immediate from the definitions.
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(2) Suppose B ⊆C and A∩C is empty. It is clear that E(A,B)⊆ E(A,C). Therefore, the
statement follows from (1).

Proofs of (6) and (10) are similar. We show (10). Suppose A < B. If A∩C = B∩C
then A∩C < B∩C by (9). Suppose A∩C ⊊ B∩C. Let X be a graph with A∩C ⊊ X ≤
B∩C. Put X1 = X −A. Then δ (X/A∩C) = δ (X1/A∩C) by Definition 1 (2). We have
δ (X1/A∩C)≥ δ (X1/A) by (2). Since X1 is non-empty, we also have δ (X1/A)> 0 by the
assumption A < B and (4). Therefore, δ (X/A∩C)> 0.

Proofs of (7) and (11) are similar. We show (11). Suppose A < B and B <C. Let X be a
graph with A ⊊ X ⊆C. We have A < X ∩B < X by (10). Since A ⊊ X , we have A ⊊ X ∩B
or X ∩B ⊊ X . Hence δ (A) < δ (X ∩B) or δ (X ∩B) < δ (X). Therefore, δ (A) < δ (X)
anyway.

(8) follows from (6) and (7). (12) follows from (10) and (11). □

Fact 2. Let D = B⊗A C.

(1) δ (D/A) = δ (B/A)+δ (C/A).
(2) If A ≤C then B ≤ D.
(3) If A ≤ B and A ≤C then A ≤ D.
(4) If A <C then B < D.
(5) If A < B and A <C then A < D.

Proof. (1) By Definition 1 (2), δ (D/A) = δ (D/C)+ δ (C/A) = δ (B/C)+ δ (C/A). Let
B′ = B−C = B−A. Then E(B′,C) = E(B′,A) since D = B⊗A C. By Fact 1 (1), we have
δ (B/C) = δ (B′)−αe(B′,C) = δ (B′)−αe(B′,A) = δ (B′/A) = δ (B/A).

(4) Suppose A < C. Let U be a graph with B ⊊ U ⊆ D. Then U = B⊗A (U ∩C).
Put U ′ = U −B = U ∩ (C −A). U ′ is a substructure of C −A and non-empty. We have
δ (U ′/A)> 0 by A <C. Also, E(U ′,B) = E(U ′,A) by BC = B⊗A C. We have δ (U ′/B) =
δ (U ′)−αe(U ′,B) = δ (U ′)−αe(U ′,A) = δ (U ′/A)> 0.

(5) follows from (4) and the transitivity of <. (2) and (3) can be shown similarly. □

Lemma 1. (1) Let A, B, C and D be graphs with D = B ⊗C and A ⊆ D. Then
δ (D/A) = δ (B/A∩B)+δ (C/A∩C).

(2) Let D be a graph and A a substructure of D. Let {D1,D2, . . . ,Dk} be the set of all
connected components of D where the Di are all distinct. Then

δ (D/A) =
k

∑
i=1

δ (Di/A∩Di).

Proof. (1) Put B′ = B − A, and C′ = C − A. By Fact 1 (1), δ (D/A) = δ (B′C′/A) =
δ (B′C′)−αe(B′C′,A). Since B′C′ = B′⊗C′, we have

δ (B′C′) = δ (B′)+δ (C′) and e(B′C′,A) = e(B′,A)+ e(C′,A).

Since there are no edges between B and C,

e(B′,A) = e(B′,A∩B) and e(C′,A) = e(C′,A∩C).

Hence,

δ (D/A) = δ (B′)+δ (C′)−αe(B′,A∩B)−αe(C′,A∩C)

= δ (B/A∩B)+δ (C/A∩C).

(2) D is a free amalgam of the all connected components of D. The statement follows
from (1). □



4 HIROTAKA KIKYO

Let B, C be graphs and g : B →C a graph embedding. g is a closed embedding of B into
C if g(B)<C. Let A be a graph with A ⊆ B and A ⊆C. g is a closed embedding over A if
g is a closed embedding and g(x) = x for any x ∈ A.

In the rest of the paper, K denotes a class of finite graphs closed under isomorphisms.

Definition 3. Let K be a subclass of Kα . (K,<) has the amalgamation property if for
any finite graphs A,B,C ∈ K, whenever g1 : A → B and g2 : A →C are closed embeddings
then there is a graph D ∈ K and closed embeddings h1 : B → D and g2 : C → D such that
h1 ◦g1 = h2 ◦g2.

K has the hereditary property if for any finite graphs A,B, whenever A ⊆ B ∈ K then
A ∈ K.

K is an amalgamation class if /0 ∈ K and K has the hereditary property and the amalga-
mation property.

A countable graph M is a generic structure of (K,<) if the following conditions are
satisfied:

(1) If A⊆M and A is finite then there exists a finite graph B⊆M such that A⊆ B<M.
(2) If A ⊆ M then A ∈ K.
(3) For any A, B ∈ K, if A < M and A < B then there is a closed embedding of B into

M over A.
Let A be a finite structure of M. By Fact 1 (12), there is a smallest B satisfying A ⊆ B <

M, written cl(A). The set cl(A) is called a closure of A in M.

Fact 3. [3, 11, 12] Let (K,<) be an amalgamation class. Then there is a generic structure
of (K,<). Let M be a generic structure of (K,<). Then any isomorphism between finite
closed substructures of M can be extended to an automorphism of M.

Definition 4. Let K be a subclass of Kα . A graph A ∈ K is absolutely closed in K if
whenever A ⊆ B ∈ K then A < B.

Note that the notion of being absolutely closed in K is invariant under isomorphisms.

Theorem 5. Let K be a subclass of Kα and M a generic structure of (K,<). Assume that
M is countably saturated. Suppose for any A ∈ K there is C ∈ K such that A <C and C is
absolutely closed in K. Then the theory of M is model complete.

Proof. Let T be the theory of M in the graph language. Since M is countably saturated,
every finite type without parameters is realised in M. Our aim is to show that T is model
compete.

Claim 1. Every finite type realised in M is generated by a single existential formula of the
graph language.

Let A be a finite substructure of M. We show that tp(A) is generated by an existential
formula. Consider the closure cl(A) of A in M. cl(A) is finite by the definition. By the
assumption of the theorem, there is B ∈ K such that cl(A) < B and B is absolutely closed
in K. Since cl(A) < B and cl(A) < M, we can embed B in M over cl(A) as a closed
substructure of M. So, We can assume that B ⊆ M and cl(A)< B < M.

Suppose A = {a1, . . . ,an} and B = {b1, . . . ,bm}. Let

ψ(x1, . . . ,xn,y1, . . . ,ym) = qftp(a1, . . . ,an,b1, . . . ,bm)

be a formula representing the quantifier-free type of (A,B). Then (a1, . . . ,an) realises an ex-
istential formula ∃y1 . . .ymψ(x1, . . . ,xn,y1, . . . ,ym). Let φ(x1, . . . ,xn) denote this formula.
We show that φ(x1, . . . ,xn) determines tp(a1, . . . ,an).
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Let c1, . . . ,cn ∈M be arbitrary. Assume that (c1, . . . ,cn) satisfies φ(x1, . . . ,xn). We show
that (c1, . . . ,cn) realises tp(a1, . . . ,an).

There is d1, . . . ,dm ∈ M such that M |= ψ(c1, . . . ,cn,d1, . . . ,dm). Then

qftp(c1, . . . ,cn,d1, . . . ,dm) = qftp(a1, . . . ,an,b1, . . . ,bm).

Hence, there is a graph isomorphism σ0 such that σ0(di) = bi for i = 1, . . . ,m and σ0(ci) =
ai for i = 1, . . . ,n. Put

C = M|{c1, . . . ,cn} and D = M|{d1, . . . ,dm}.
Then σ0 : D → B is a graph isomorphism such that σ0|C is a graph isomorphism from C to
A.

D is also absolutely closed in K. Hence D is closed in M. Therefore, σ0 can be extended
to an graph automorphism σ of M by Fact 3. Hence, tp(c1, . . . ,cn) = tp(a1, . . . ,an). The
claim is proved.

By the claim, every formula is equivalent to an existential formula modulo T . Therefore,
T is model complete. □
Definition 6. Let K be a subclass of Kα . (K,<) has the free amalgamation property if
whenever D = B⊗A C with B,C ∈ K, A < B and A <C then D ∈ K.

By Fact 2 (4), we have the following.

Fact 4. Let K be a subclass of Kα . If (K,<) has the free amalgamation property then it
has the amalgamation property.

Definition 7. Let R+ be the set of non-negative real numbers. Suppose f : R+ → R+ is a
strictly increasing concave (convex upward) unbounded function. Assume that f (0) = 0,
and f (1)≤ 1. Define K f as follows:

K f = {A ∈ Kα | B ⊆ A ⇒ δ (B)≥ f (|B|)}.
Note that if K f is an amalgamation class then the generic structure of (K f ,<) has a count-
ably categorical theory [12].

The following is the main theorem.

Theorem 8. Let α = m/d < 1 with relatively prime positive integers m and d. Let f :
R+ → R+ be a strictly increasing concave unbounded function. Assume that f (0) = 0,
f (1)≤ 1, and f (x)+1/d ≥ f (2x) for any positive integer x.

Then (K f ,<) has the free amalgamation property and the theory of the generic struc-
ture of (K f ,<) is model complete.

In the rest of the paper, we assume that the assumption of Theorem 8 holds:

Assumption 9. (1) α =m/d < 1 where m and d are relatively prime positive integers.
(2) f : R+ → R+ is a strictly increasing concave unbounded function.
(3) f (0) = 0, f (1)≤ 1.
(4) f (x)+1/d ≥ f (2x) for any positive integer x.

In order to discuss if a given graph is in K f or not, the following definition will be
convenient.

Definition 10. Let B be a graph and c ≥ 0 an integer. B is normal to f if δ (B) ≥ f (|B|).
B is c-normal to f if δ (B) ≥ f (|B|+ c). B is c-critical to f if B is c-normal to f and c is
maximal with this property.
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The following three lemmas are immediate from the definitions and Assumption 9
above.

Lemma 2. Let A be a finite graph.
(1) Suppose A is normal to f and non-empty. Then δ (A)> 0.
(2) A ∈ K f if and only if every substructure of A is normal to f .
(3) Let c and c′ be integers such that 0 ≤ c ≤ c′. If A is c′-normal to f then A is

c-normal to f , and in particular, A is normal to f .
(4) Let A be normal to f . Let n be an integer such that δ (A) ≥ f (n) but δ (A) <

f (n+1). Such an n uniquely exists. Let c = n−|A|. Then A is c-critical to f . c is
a unique integer u such that A is u-critical to f .

(5) Let B be another graph such that δ (A) = δ (B), |A| ≤ |B| and A and B are normal
to f . Then B is c-critical to f if and only if A is (|B|− |A|+ c)-critical to f .

Proof. (1) Since A is non-empty, we have 0 < |A|. By Assumption 9, f (0) = 0, and f is
strictly increasing. Hence δ (A)≥ f (|A|)> 0.

(2) By the definitions.
(3) Suppose A is c′-normal to f . Then δ (A)≥ f (|A|+ c′). Since |A|+ c′ ≥ |A|+ c and

f is strictly increasing, we have f (|A|+ c′)≥ f (|A|+ c). Hence, δ (A)≥ f (|A|+ c). So, A
is c-normal to f . Since c′ ≥ 0, A is 0-normal to f . This means that A is normal to f .

(4) Since A is normal to f , we have δ (A) ≥ f (|A|). Since the function f is unbounded
and increasing, there is an integer x such that δ (A) < f (x). Hence, we can choose an
integer n ≥ |A| such that δ (A) ≥ f (n) but δ (A) < f (n+1). Since f is strictly increasing,
such an n is unique. Let c = n−|A|. Then n = |A|+c. Then δ (A)≥ f (n) = f (|A|+c) but
δ (A)< f (x) for any x ≥ n+1 = |A|+c+1. Therefore, A is c-critical to f . Such a c is also
unique by (3).

(5) Since B is normal to f , we have δ (B) ≥ f (|B|). Since δ (A) = δ (B), |A| ≤ |B|, and
f is strictly increasing, we have δ (A)≥ f (|B|)≥ f (|A|). Hence, A is also normal to f . Let
n be the unique integer such that δ (A) ≥ f (n) but δ (A) < f (n+ 1). Then B is (n−|B|)-
critical to f and A is (n−|A|)-critical to f by (4). (5) holds because n−|B|= c if and only
if n−|A|= |B|− |A|+ c. □

Lemma 3. Recall that α = m/d < 1 with relatively prime positive integers m and d. Let
B ∈ K f . Suppose |B| ≥ m, and B is c-critical to f with 0 ≤ c < m. Then B is absolutely
closed in K f .

Proof. Suppose B is not absolutely closed in K f . Then there is a proper extension B′ ∈ K f
of B with δ (B)≥ δ (B′).

If δ (B)> δ (B′) then δ (B)≥ δ (B′)+1/d ≥ f (|B′|)+1/d ≥ f (2|B′|). Since m ≤ |B| ≤
|B′|, B must be m-normal. But this contradicts the assumption that B is c-critical with
c < m.

Otherwise, we have δ (B) = δ (B′). Let k = |B′−B|. Then 0 < k ≤ c < m. We have
0 = δ (B′/B) = δ (B′−B)−αe(B′−B,B) = k− lα = k− l(m/d) for some integer l ≥ 0.
Hence, m/d = k/l with k < m. But this is impossible because m and d are relatively
prime. □

Lemma 4. Let A, U be graphs such that A ⊆U, δ (A)≤ δ (U), and A is |U −A|-normal to
f . Then U is normal to f .

Proof. δ (U)≥ δ (A)≥ f (|A|+ |U −A|) = f (|U |). □
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Lemma 5. Recall that α = m/d < 1 with relatively prime positive integers m and d. Let
A = A′ ⊗P where A′ is non-empty and P consists of isolated points of A. Assume A′ is
normal to f .

(1) If |P| ≥ 2 then A is 3m|A|-normal to f .
(2) If |P|= 1 then A is m|A|-normal to f .

Proof. Put n = |P|. We have |A| = |A′|+ n and δ (A) = δ (A′) + n ≥ f (|A′|) + nd/d ≥
f (2nd |A′|).

(1) We have n ≥ 2. We show that A is 5m|A|-normal to f if α ̸= 1/2 and A is 3m|A|-
normal to f if α = 1/2.

Assume α ̸= 1/2. Then d ≥ 3. Hence nd ≥ 6 and thus 2nd > 10nd. Therefore, 2nd |A′|>
10nd|A′| ≥ 10n(m+ 1)|A′| > 5(m+ 1)(|A′|+ n) = 5(m+ 1)|A|. Hence, δ (A) ≥ f ((5m+
1)|A|). This means that A is 5m|A|-normal to f .

Now, assume α = 1/2. Then m = 1 and d = 2. nd = 2n ≥ 4 since n ≥ 2. Hence,
2nd |A′| ≥ 4nd|A′| = 8n|A′| > 4(|A′|+ n) = 4|A| = (3m+ 1)|A|. Hence, δ (A) > f ((3m+
1)|A|). This means that A is 3m|A|-normal to f .

(2) Suppose n = 1. Since d ≥ 2 and 2|A′| ≥ |A|, we have 2d |A′| ≥ 2d|A′| ≥ (m+1)|A|.
Therefore, δ (A)≥ f (2d |A′|)≥ f ((m+1)|A|). This means that A is m|A|-normal to f . □

Lemma 6. (1) Let D = B⊗A C with δ (A) < δ (B) and δ (A) < δ (C). If B and C are
normal to f then D is normal to f .

(2) Let D = B⊗C. If B and C are normal to f then D is normal to f .

Proof. (1) By symmetry, we can assume that |C| ≤ |B|. Then |D| ≤ 2|B|. Also, δ (D) =
δ (B)+δ (C)−δ (A)> δ (B) since δ (C)−δ (A)> 0. Hence,

δ (D)≥ δ (B)+1/d ≥ f (|B|)+1/d ≥ f (2|B|)≥ f (|D|).

Therefore, D is normal to f .
(2) By Lemma 2, we have δ (B)> 0 and δ (C)> 0. We can apply (1) with A = /0. □

Proposition 1. (K f ,<) has the free amalgamation property. In particular, If D = B⊗C
with B,C ∈ K f , then D ∈ K f .

Proof. Let D = B⊗A C with B,C ∈ K f , A < B and A < C. Suppose U ⊆ D. If U ⊆ B
or U ⊆ C then U ∈ K f since B,C ∈ K f . Now, suppose that U ̸⊆ B and U ̸⊆ C. Then
U = (U ∩B)⊗U∩A (U ∩C), δ (U ∩B) > δ (U ∩A), and δ (U ∩C) > δ (U ∩A) by Fact 1
(10). U ∩B and U ∩C are normal to f since B and C are in K f . U is normal to f by
Lemma 6. Therefore, D ∈ K f . □

If we assume that f (1) = 1 for our bounding function f , then any single vertex is abso-
lutely closed. In this case, any two structures in K f always have a free amalgam over single
vertex. With Assumption 1, we will see that any forest belongs to K f , and any structure in
K f and any forest have free amalgam over single vertex.

Definition 11. Let B be a graph with A ⊆ B. B is an extension of A by a path of length 1 if
B = A⊗a ab, or B = A⊗ab with a path ab of length 1. A graph B is an extension of A by
paths if there is a finite sequence A0, A1, . . ., An of graphs such that A0 = A, An = B, and
Ai is an extension of Ai−1 by a path of length 1 for each i = 1, . . ., n.

Lemma 7. (1) Let A be a non-empty graph which is normal to f , and B an extension
of A by paths. Then B is normal to f .

(2) Any finite forest belongs to K f .
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Proof. (1) Recall that α = m/d < 1 with relatively prime integers m and d. Suppose
B= A⊗a ab with a path ab. Then |B|= |A|+1 and δ (B) = δ (A)+(1−α)≥ δ (A)+1/d ≥
f (|A|)+1/d ≥ f (2|A|)≥ f (|B|). Hence, B is normal to f . Similarly, the path ab is normal
to f . If B = A⊗ab then B is also normal to f by Lemma 6 (2). Iterating this argument, we
have the statement of (1).

(2) A single vertex is normal to f by f (1) ≤ 1. Any forest is an extension by paths of
a single vertex. Hence, any forest is normal to f . Since any substructure of a forest is a
forest, any forest belongs to K f . □

Proposition 2. Let B be a forest and v a vertex of B. Then B ∈ K f and v < B.

Proof. B ∈ K f by Lemma 7 (2). Suppose v ⊊U ⊆ B. Then U is a forest with |U | ≥ 2. Let
U0 be a connected component of U with v ∈U0. We can write U =U0 ⊗U ′.

Case U0 = v. U ′ is non-empty and thus δ (U ′)> 0. Hence, δ (U)> δ (U0) = 1.
Case U0 ̸= v. Then |U0| ≥ 2. Since U0 is a tree, U0 has |U0|−1 edges. Hence δ (U) ≥

δ (U0) = |U0|− (|U0|−1)α = 1+(|U0|−1)(1−α)> 1. □

Proposition 3. Let C be a cycle. If the length of C is sufficiently large then C belongs to
Kα and any single vertex in C is closed in C.

Proof. Let k be an integer satisfying (1 − α)k > 1, and l an integer satisfying l ≥ 2k.
We can write l = k + k′ with k′ ≥ k. Let C be a cycle of length l. Then we can write
C = P⊗{a,b} P′ where P and P′ are paths of length k and k′ respectively, and a and b are
ends of both paths P and P′. Since δ (P) = 1+(1−α)k > 2, it is easy to see that {a,b} is
closed in P. With the same argument, {a,b} is closed in P′ as well. P and P′ belong to K f
by Proposition 2. Hence C belongs to K f by the free amalgamation property of K f .

We have δ (C) > δ ({a,b}) > 1 and any proper substructure of δ (C) is a free amalgam
of paths. Therefore, any single vertex in C is closed in C. □

Definition 12. Let R, S be sets and µ : R → S a map. For Z ⊆ [R]m, put

µ(Z) = {{µ(x1), . . . ,µ(xm)} | {x1, . . . ,xm} ∈ Z}.
Let B, C, and D be graphs and X a set of vertices. We write D = B⋊X C if C|X has no

edges and the following hold:
(1) V (D) =V (B)∪V (C).
(2) X =V (B)∩V (C).
(3) E(D) = E(B)∪E(C).

Since we are assuming that C has no edges on X , B is a usual substructure of D but
C may not be a substructure of D in general. If B has no edges on X , then D is the free
amalgam of B and C over X .

Lemma 8. Let D be a graph with D = B⋊X C.
(1) δ (D/B) = δ (C/X).
(2) δ (D) = δ (B)+δ (C/X).

Proof. (1) We have D−B =C−X , and ED(C−X ,B) = EC(C−X ,X) by the definition of
⋊. The statement follows from Fact 1 (1).

(2) follows from (1). □

Lemma 9. Let D be a graph with D = B⋊X C.
(1) If C|X <C then B < D.
(2) If C|X ≤C then B ≤ D.
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Proof. (1) Assume C|X < C. Suppose B ⊊ U ⊆ D. Then U = B⋊X UC for some sub-
structure UC of C with X ⊊ UC. By Lemma 8 (1), we have δ (U/B) = δ (UC/X) and
δ (UC/X)> 0 by C|X <C.

(2) Similar to (1). □

2. BALANCED ZERO-SUM SEQUENCES

We will use some sequences of numbers to construct structures called twigs or wreaths
in a later section. We state and prove some properties of finite zero-sum sequences. Most
of them are easy facts but it seems difficult to find them in the literature. We define what
we mean by a finite sequence first.

Definition 13. Let Z be the set of integers, and n a positive integer. [n] denotes the set
{i ∈ Z | 0 ≤ i < n}. Let Y be a set. A Y -sequence of length n is a map from [n] to Y . If s is
a Y -sequence of length m and t a Y -sequence of length n then a concatenation of s and t is
a Y -sequence u of length m+n such that u(i) = s(i) for 0 ≤ i < m and u(m+ j) = t( j) for
0 ≤ j < n. st denotes the concatenation of s and t. sn with a positive integer n denotes the
finite sequence obtained by concatenating n copies of s.

Definition 14. Let R be the set of real numbers and s a R-sequence of length l. ∑s is the
value ∑l−1

i=0 s(i). If s = uv then vu is called a rotation of s.
If s = uvw, u is called a prefix of s, w a suffix of s and v a consecutive subsequence of s.
Let c be a real number. c · s is a sequence obtained by multiplying c to each entry of s.
⟨y⟩ is a sequence s of length 1 such that s(0) = y.

Definition 15. Let s be a finite R-sequence. s is a zero-sum sequence if ∑s = 0.
Let c > 0 be a real number. s is c-balanced if whenever u is a consecutive subsequence

of s then |∑u|< c.
s has the positively c-balanced prefix property if whenever u is a non-empty prefix of s

with u ̸= s then 0 < ∑u < c.
Let l be a positive integer and n the length of s. s is a periodic sequence with period l if

s(i) = s(i+ l) for any i with 0 ≤ i < i+ l < n.

We state some easy facts first.

Lemma 10. Let s be a zero-sum R-sequence of length l, c and c′ positive real numbers,
and n a positive integer.

(1) If s is c-balanced and s = uwv then |∑u+∑v|< c.
(2) sn is a periodic sequence with period l. It is a zero-sum sequence.
(3) Any consecutive subsequence of sn of length l is a zero-sum sequence.
(4) If s is c-balanced then sn is also c-balanced.
(5) If s is c-balanced, then any rotation of s is c-balanced.
(6) If s has the positively c-balanced prefix property then s is c-balanced.
(7) If s is c-balanced and c′ is a non-zero real number then c′ · s is |cc′|-balanced.
(8) Suppose c′ > 0. s has the positively c-balanced prefix property if and only if c′ · s

has the positively cc′-balanced prefix property.

Proof. (2), (7), and (8) are clear.
(1) Suppose s is c-balanced and s = uwv. We have |∑w| < c because s is c-balanced.

Since s is a zero-sum sequence, we have ∑u+∑w+∑v = 0. Hence, ∑u+∑v = −∑w.
Therefore, |∑u+∑v|= |−∑w|= |∑w|< c.

(5) follows from (1).
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(3) Let s′ be a consecutive subsequence of sn of length l. Since the length of s′ is
equal to the length of s, s′ is a consecutive subsequence of s2. Hence ss = us′v for some
sequences u, v. Since the length of s′ is l, the length of uv is also l. Because u is a
prefix of s, v is a suffix of s, we have uv = s. So, we have ∑u+∑v = ∑s = 0. Hence,
0 = ∑s+∑s = ∑ss = ∑us′v = ∑u+∑s′+∑v = ∑s′.

(4) Let s′ be a consecutive subsequence of sn. Since any subsequence of s′ of length
l has zero-sum by (2), we can assume that the length of s′ is less than l. Hence, s′ is a
subsequence of s2, and thus we can write s′ = vu where v is a suffix of s and u a prefix
of s. Since the length of s′ is less than l, we can write s = uwv. By (1), we have |∑s′| =
|∑u+∑v|< c.

(6) Let v be a consecutive subsequence of s. Then uv is a prefix of s for some prefix u
of s. Since s has the positively c-balanced prefix property, 0 < ∑u < c and 0 < ∑uv < c.
We have ∑v = ∑uv−∑u. Hence, |∑v|< c. □

Proposition 4. (1) Let a and b be positive real numbers such that a/b is a rational
number. Let p, q be relatively prime positive integers such that a/b = p/q. Then
there exists uniquely a zero-sum {a,−b}-sequence which has the positively (a+
b)-balanced prefix property. The length of such a sequence is p+q.

(2) Let b be a non-zero real number. Then ⟨0⟩ is the unique zero-sum {0,b}-sequence
which has the positively |b|-balanced prefix property.

Proof. (1) By Lemma 10 (7), it is enough to show the statement in the case that a = p and
b = q.

Let s be a {p,−q}-sequence with positively (p+q)-balanced prefix property. We show
that such a sequence s uniquely exists.

Since s(0) must be positive, we have s(0) = p.
Suppose s(i) is defined for i < n.
If ∑n−1

i=0 s(i)≥ q then s(n) cannot be p because ∑n
i=0 s(i) will be p+q or more. Therefore,

s(n) must be −q.
If ∑n−1

i=0 s(i)< q, then s(n) cannot be −q because ∑n
i=0 s(i) will be negative. Therefore,

s(n) must be p.
Hence, s must satisfy the following two conditions.

(i) s(0) = p.
(ii) If ∑n−1

i=0 s(i)≥ q then s(n) =−q. Otherwise, s(n) = p.

By induction, we see that such a sequence exists and is unique.
By induction, we can see that 0 ≤ ∑k

i=0 s(i) < p+q for any k. Also, we can see that p
appears q times in s eventually. Let j be the index such that s( j) is the q’th p in s. If k < j,
then ∑k

i=0 s(i) = l p− l′q with l < q. Since p and q are relatively prime, l p− l′q cannot be
zero. Hence, ∑k

i=0 s(i) > 0 for k < j. We also have ∑ j
i=0 s(i) > 0 because s( j) = p > 0.

0 < ∑ j
i=0 s(i) = qp− l′′q = (p− l′′)q for some integer l′′. By the inductive definition of s,

⟨−q⟩p−l′′ follows. Therefore, s|[p+q] is a zero-sum {p,−q}-sequence with the positively
(p+q)-balanced prefix property. It cannot be shorter or longer.

(2) ⟨0⟩ is a zero-sum {0,b}-sequence which has the positively |b|-balanced prefix prop-
erty by the definition. It is easy to check that no other sequences can be a zero-sum {0,b}-
sequence. □



MODEL COMPLETENESS OF GENERIC GRAPHS IN RATIONAL CASES 11

Let s be a zero-sum {a,−b}-sequence with the positively (a+b)-balanced prefix prop-
erty. Since s is (a+ b)-balanced, any rotation of sk with a positive integer k is (a+ b)-
balanced. It turns out that any (a+ b)-balanced zero-sum {a,−b}-sequence is a rotation
of sk for some positive integer k [10].

3. ZERO-EXTENSIONS

To prove Theorem 8, given a graph A ∈ K f , we would like to construct an extension B
of A such that A < B and B is absolutely closed.

Definition 16. Let A and B be graphs. B is a zero-extension of A if A ≤ B and δ (B/A) = 0.
B is a minimal zero-extension of A if B is a proper zero-extension of A and minimal with
this property. In this case, A ⊊U ⊊ B implies A <U .

B is a biminimal zero-extension of A if B is a minimal zero-extension of A and whenever
A′ ⊆ A and δ (B−A/A′) = 0 then A′ = A.

We will use the following facts many times.

Fact 5. Let A be a substructure of a graph B. The following are equivalent:
(1) B is a biminimal zero-extension of A.
(2) δ (B/A) = 0 and whenever D ⊊ B then A∩D < D.

Proof. We first show that (1) implies (2). Assume (1). We have δ (B/A) = 0 because B is
a zero-extension of A.

Suppose D is a proper substructure of B. We show that A∩D < D.
Case A∩D = D. We have A∩D < D by the definition of <.
Case A∩D ̸= D. In this case, D−A is non-empty. Suppose A∩D ⊊ U ⊆ D. We are

going to show that δ (U/A∩D)> 0.
Subcase U −A = B−A. We have D−A = B−A because U ⊆ D ⊆ B. Hence, A∩D ̸= A

since D is a proper substructure of B. Thus, δ (U/A∩D) = δ (B−A/A∩D)≥ δ (B−A/A)
by Fact 1 (2). Since δ (B−A/A) = δ (B/A) = 0, we haveδ (B−A/A∩D) ≥ 0. δ (B−
A/A∩D) ̸= 0 since B is a biminimal extension of A and A∩D ̸= A. Hence, δ (U/A∩D) =
δ (B−A/A∩D)> 0.

Subcase U −A ̸= B−A. We have δ (U/A∩D) = δ (U −A/A∩D) ≥ δ (U −A/A) by
Fact 1 (2). Also, δ (U −A/A) > 0 since B is a minimal zero-extension of A and U −A is
non-empty because A∩D ⊊U ⊆ D. Hence, δ (U/A∩D)> 0.

(2) is proved.
It is straightforward to see that (2) implies (1). □

Fact 6. Let D=B⊗AC where B and C are zero-extensions of A. Then D is a zero-extension
of A.

Proof. We have A ≤ D by Fact 2 (3). We have δ (D/A) = 0 by Fact 2 (1). □
Definition 17. (Twig) Recall that α = m/d < 1 with relatively prime positive integers m
and d. Let l be the largest integer x such that xα ≤ 1. Put r = d mod m.

We have 1− lα = r/d ≥ 0, 1− (l +1)α = (r−m)/d < 0, and

|1− lα|+ |1− (l +1)α|= (1− lα)− (1− (l +1)α) = α.

Let s be a zero-sum {1− lα,1− (l + 1)α}-sequence of length m with the positively α-
balanced prefix property. Such a sequence s exists uniquely by Proposition 4. We call s a
special sequence for α .

A graph W is called a general twig associated to sk if W can be written as W = BF with
substructures B and F having the following properties:
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FIGURE 1. A twig for 5/13 (left) and a twig for 5/7 (right)

(1) B is a path b0b1 · · ·bkm−1 of length km−1.
(2) F is the set of all leaves of W .
(3) b0 is adjacent to exactly l leaves in F .
(4) For i > 0, if sk(i) = 1− lα then bi is adjacent to exactly l −1 leaves in F .
(5) For i > 0, if sk(i) = 1− (l +1)α then bi is adjacent to exactly l leaves.

Let D be a substructure of W . B(D) denotes B∩D, and F(D) denotes F ∩D. If α =
1/d, W is a star with d leaves. By the construction, 1− e(b0,F(W ))α = sk(0), and 1−
(e(bi,F(W ))+1)α = sk(i) for i > 0.

Let D be a connected substructure of W such that B(D) is non-empty. Since any vertex
in F(D) is a leaf of W , B(D) must be a connected substructure of B(W ). Then we can see
that B(D) is a path b jb j+1 · · ·bk for some j and k with j ≤ k. We call D a non-prefix of
B(W ) if j > 0 and a proper prefix of B(W ) if i = 0 and B(D) ̸= B(W ).

In the case that k = 1, we call W a twig associated to s. In this case, we also call W a
twig for α without referring to s.

Note that the sequence sk corresponds to a calculation of δ (W/F(W )) where W is a
general twig associated to sk. See Figure 4.

Example 1. Let α = 5/13. Then 1−2α = 3/13 and 1−3α =−2/13.

s5/13 = ⟨1−2α,1−3α,1−2α,1−3α,1−3α⟩

is the special sequence for 5/13. A twig W associated to s5/13 is shown in Figure 1 (left).
The upper path is B(W ) and the set of lower leaves is F(W ).

Example 2. Let α = 5/7. Then 1−α = 2/7 and 1−2α =−3/7.

s5/7 = ⟨1−α,1−α,1−2α,1−α,1−2α⟩

is the special sequence for 5/7. A twig associated to s5/7 is shown in Figure 1 (right).

Let W be a twig. If α ≤ 1/2 then l ≥ 2 in the definition of a twig. Hence, if α ≤ 1/2
then each vertex in B(W ) is adjacent to some leaf in F(W ). If α > 1/2 then l = 1 in the
definition of a twig.

Definition 18. (Wreath) Recall that α = m/d < 1 with relatively prime positive integers
m and d. Let s be the special sequence for α . Let l be an integer such that 1− lα ≥ 0 and
1− (l +1)α < 0. Let k be an integer such that km ≥ 3.

A graph W is called a wreath associated to sk if W can be written as W = BF with the
following properties:

(1) B is a cycle b0b1 · · ·bkm−1b0 of length km.
(2) F is the set of all leaves of W .
(3) For i with 0 ≤ i < km, if sk(i) = 1− lα then bi is adjacent to exactly l −1 leaves

in F .
(4) For i with 0 ≤ i < km, if sk(i) = 1− (l+1)α then bi is adjacent to exactly l leaves

in F .
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FIGURE 2. A wreath for 5/13 associated to s3
5/13

FIGURE 3. A wreath for 5/7 associated to s3
5/7

(a twig) (a part of a wreath)
1−2α, 1−3α, 1−2α, 1−3α, 1−3α 1−2α, 1−3α, 1−2α, 1−3α, 1−3α

FIGURE 4. A special sequence corresponding to a calculation of
δ (W/F(W )) (α = 5/13).

We also say that W is a wreath for α without referring to sk.
Let D be a substructure of W . B(D) denotes B∩D, and F(D) denotes F ∩D. By the

construction, 1− (e(bi,F(W ))+1)α = sk(i) for any i with 0 ≤ i < km.

Note that given a twig or a wreath W for α , we have |F(W )| ≥ 2 by definition. We will
use this fact later.

Example 3. Recall a special sequence s5/13 for 5/13 from Example 1. A twig associated
to s3

5/13 is shown in Figure 2.

Example 4. Recall a special sequence s5/7 for 5/7 from Example 2. A twig associated to
s3

5/7 is shown in Figure 3.

Lemma 11. Any twig for α belongs to K f . Let W be a wreath for α . If B(W ) belongs to
K f then W belongs to K f . If |B(W )|= km then |F(W )| ≥ k.

Proof. A twig for α is a tree. Therefore, it belongs to K f by Proposition 2. W is a wreath.
So, it is an extension of cycle B(W ) by paths. By Proposition 3 and Lemma 7, W belongs
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to K f . Let s be the special sequence for α . If |B(W )|= km, then W is a wreath associated
to sk. Hence, any connected substructure of B(W ) with m vertices has a vertex adjacent to
a leaf in F(W ). Therefore, |F(W )| ≥ k. □

We can prove that any wreath with sufficiently large girth belongs to any amalgamation
class with the free amalgamation property by Propositions 2 and 3.

Definition 19. Let W be a twig or a wreath for α and D a substructure of W . A defect of
D in W is an edge b f of W such that b ∈ B(D) and f ∈ F(W ), but b f is not an edge of D.
An edge b f of W is a defect of D if and only if b ∈ B(D) but f ̸∈ F(D).

Definition 20. Let W be a twig or a wreath for α and D a connected substructure of W . D
is smooth if one of the following conditions holds:

(1) B(D) is a cycle.
(2) B(D) is a path v0v1 · · ·v j with 0 ≤ j where v0 is adjacent to a vertex in F(D).

Twigs and wreaths are designed to make the following lemmas hold.

Lemma 12. Let s be the special sequence for α , W a general twig associated to sk with
k ≥ 1, and D a connected substructure of W.

(1) If D =W then δ (D/F(D)) = 0.
(2) If B(D) = B(W ) and F(D) ̸= F(W ) then δ (D/F(D))> 0.
(3) If B(D) is a non-empty non-prefix of B(W ) then δ (D/F(D))> 0.
(4) If k = 1 and B(D) is a non-empty proper prefix of B(W ) then δ (D/F(D))> 0.

Proof. (1) We have W = B(W )F(W ), B(W )∩F(W ) = /0, B(W ) is a path b0b1 . . .bkm−1,
1− e(b0,F(W ))α = s(0), and 1− (e(bi,F(W ))+1)α = s(i) for each i with 0 < i < km.

We show that δ (W/F(W )) = 0. By Fact 1 (1), δ (W/F(W )) = δ (B(W )/F(W )) =
δ (B(W ))−e(B(W ),F(W ))α . Since B(W ) is a path of length km−1, B(W ) has km vertices
and km−1 edges. We have δ (B(W )) = km− (km−1)α . Since B(W ) = b0b1 . . .bkm−1, we
have e(B,F) = ∑km−1

i=0 e(bi,F(W )).
Hence,

δ (W/F(W )) = δ (B(W ))− e(B(W ),F(W ))α

= km− (km−1)α −
km−1

∑
i=0

e(bi,F(W ))α

= 1− e(b0,F(W ))α +
km−1

∑
i=1

(1− (e(bi,F(W ))+1)α)

= s(0)+
km−1

∑
i=1

sk(i) = ∑sk = 0.

(2) Suppose B(D) = B(W ), and F(D) is a proper subset of F(W ). There must be a
defect of D. Hence, e(B(W ),F(D))< e(B(W ),F(W )). So, we have

δ (D/F(D)) = δ (B(D)/F(D))

= δ (B(W )/F(D))

= δ (B(W ))− e(B(W ),F(D))α
> δ (B(W ))− e(B(W ),F(W ))α.

We also have δ (B(W ))− e(B(W ),F(W ))α = 0 by (1). Therefore, δ (D/F(D))> 0.
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(3), (4) Suppose B(D) ̸=B(W ) and B(D) is non-empty. Then B(D) is a path bpbp+1 · · ·bq
for some integers p, q with 0 ≤ p ≤ q ≤ km−1. The length of the path B(D) is q− p and
it is less than km−1. Note that e(b,F(D))≤ e(b,F(W )) for each b ∈ B(D). We have

δ (D/F(D)) = δ (B(D))− e(B(D),F(D))α

= (q− p+1)− (q− p)α −
q

∑
i=p

e(bi,F(D))α

≥ (q− p+1)− (q− p)α −
q

∑
i=p

e(bi,F(W ))α

= 1− e(bp,F(W ))α +
q

∑
i=p+1

(1− (e(bi,F(W ))+1)α)

= 1− e(bp,F(W ))α +
q

∑
i=p+1

sk(i).

If p ≥ 1, then 1− (e(bp,F(W ))+1)α = sk(p). Hence, 1− e(bp,F(W ))α = α + sk(p).
Therefore,

1− e(bp,F(W ))α +
q

∑
i=p+1

sk(i) = α +
q

∑
i=p

sk(i).

So, δ (D/F(D)) ≥ α + ∑u for some consecutive subsequence u of sk. Since sk is α-
balanced, |∑u|< α . Hence, δ (D/F(D))≥ α +∑u > 0. So, we have (3).

Suppose k= 1 and B(D) is a proper prefix of W . Then p= 0. We have 1−e(bp,F(W ))α =
s(0). Hence, δ (D/F(D)) = ∑u with u a proper prefix of s. Since s has the positively α-
balanced prefix property, ∑u > 0. So, we have (4). □

Lemma 13. Let s be the special sequence for α , W a wreath associated to sk with k ≥ 1,
and D a connected substructure of W.

(1) If D =W then δ (D/F(D)) = 0.
(2) If B(D) = B(W ) and F(D) ̸= F(W ) then δ (D/F(D))> 0.
(3) If B(D) is non-empty and B(D) ̸= B(W ) then δ (D/F(D))> 0.

Proof. The proofs for (1) and (2) go parallel to that for Lemma 12 (1) and (2).
(3) Suppose B(D) is non-empty and B(D) ̸= B(W ). Then B(D) is a path. So, we can

consider D as a substructure of some general twig W ′ associated to s2k such that B(D) is a
non-prefix of B(W ′). Therefore, δ (D/F(D))> 0 by Lemma 12 (3). □

Lemma 14. Let W be a twig or a wreath for α . Then W is a biminimal zero-extension of
F(W ). In particular, if D is a proper substructure of W then F(D)< D by Fact 5.

Proof. We have δ (W/F(W )) = 0 by Lemma 12 (1). We show first that W is a minimal
zero-extension of F(W ). Let U be a substructure of W and suppose that F(W )⊊U ⊊W .
Then B(U) ⊊ B(W ). We want to show that δ (U/F(U)) > 0. Let {D1,D2, . . . ,Dk} be the
set of all connected components of U where the Di are all distinct. By Lemma 1, we have
δ (U/F(U)) = ∑k

i=1 δ (Di/F(Di)). Note that B(Di)⊊ B(W ) for each i since B(U)⊊ B(W ).
If B(Di) is empty, then Di = F(Di). Hence, δ (Di/F(Di)) = 0.
Suppose B(Di) is non-empty. Since B(Di) ⊊ B(W ), we have δ (Di/F(Di)) > 0 by

Lemma 12 (3) and (4).
Hence, δ (U) > 0 because there must be i such that B(Di) is non-empty since B(U) is

non-empty.
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Now, we show that W is a biminimal zero-extension of F(W ). Let U be a substructure of
W with B(U)=B(W ) and F(U) ̸=F(W ). Then U is connected. We have δ (B(W )/F(U))=
δ (U/F(U))> 0 by Lemma 12 (2).

In the case that W is a wreath for α , we can show the statement similarly by using
Lemma 13. □

Lemma 15. Let G = A⋊F(W )W where A ∈ K f and W is a wreath for α with W ∈ K f . Let
U be a substructure of G where U = (U ∩A)⋊F(D) D with D a substructure of W.

(1) If (U ∩A)⋊F(D′) D′ is normal to f for any connected component D′ of D then U
is normal to f .

(2) If F(D) is empty then U belongs to K f .
(3) If D is connected and F(D) is non-empty then there is a smooth connected sub-

structure D′ of D such that F(D′) = F(D) and U is an extension of (U ∩A)⋊F(D)

D′ by paths.
(4) If (U ∩A)⋊F(D′) D′ is normal to f for any smooth connected substructure D′ of D

then U is normal to f .

Proof. (1) If D is connected then the statement is obvious.
Suppose D is not connected. Then D ̸= W . Let {D1,D2, . . . ,Dk} be the set of all con-

nected components of D where the Di are all distinct. We have Di ̸=W for each i because
D ̸=W . We can represent

U =U1 ⊗U∩A U2 ⊗U∩A · · ·⊗U∩A Uk

with Ui = (U ∩A)⋊F(Di)Di for each i. By Lemmas 14 and 8 (1), we have δ (U ∩A)< δ (Ui)
if B(Di) is non-empty. Also, Ui =U ∩A if B(Di) is empty. U is normal to f by Lemma 6
(1).

(2) Suppose F(D) is empty. Then U = (U ∩A)⊗B(D). Since U ∩A ∈ K f and W ∈ K f ,
U ∈ K f by the free amalgamation property of K f .

(3) Suppose D is connected. If B(D) is a cycle, then it is already smooth. Suppose B(D)
is a path, say v0v1 · · ·vl . Since F(D) is non-empty, there is i such that vi is adjacent to a
leaf in F(D). We can assume that i is the smallest index with this property. Let D′ be the
substructure D−{v0,v1, . . . ,vi−1} of D. Then F(D′) = F(D), D′ is smooth, connected and
D = D′⊗vi v0v1 . . .vi with path v0v1 . . .vi. We have

U = ((U ∩A)⋊F(D) D′)⊗vi v0v1 . . .vi.

(4) Suppose that (U ∩A)⋊F(D′)D′ is normal to f for any smooth connected substructure
D′ of D.

Let C be a connected component of D. Put UC = (U ∩A)⋊F(C)C. By (1), it is enough to
show that UC is normal to f . If F(C) is empty then U ′ is normal to f by (2). We can assume
that F(C) is non-empty. By (3), there is a substructure C′ of C such that C′ is a smooth
connected substructure of C, F(C′) = F(C) and UC is an extension of (U ∩A)⋊F(C)C′ by
paths. By the assumption, (U ∩A)⋊F(C)C′ is normal to f . UC is normal to f by Lemma 7
(1). □

Lemma 16. Recall that α = m/d < 1 with relatively prime positive integers m and d. Let
W be a twig or a wreath for α , and D a substructure of W which is connected, smooth, and
has exactly k defects with k ≥ 0.

(1) If α ≤ 1/2 then |B(D)| ≤ |F(D)|+ k.
(2) |B(D)| ≤ m(|F(D)|+ k) in general.
(3) If B(D) = B(W ) then δ (D/F(D)) = kα .
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(4) If B(D) is a non-empty proper substructure of B(W ) then δ (D/F(D))> kα .

Proof. Let D′ be a substructure of W such that B(D′) = B(D) and D′ has no defect. We
can obtain D′ by adding every defect of D to D. Since every vertex in F(W ) is a leaf of W ,
F(W ) and E(B(W ),F(W )) are in one-to-one correspondence by a map sending f ∈ F(W )
to an edge b f of W with b ∈ B(W ). Each v ∈ F(D′)−F(D) corresponds to a defect of D.
Therefore, |F(D′)|= |F(D)|+ k.

(1) Suppose α ≤ 1/2. We have lα ≤ 1, and (l + 1)α > 1 for some l ≥ 2. By the
construction of a twig or a wreath, for every vertex b in B(W ), there is an edge b f of W
with f ∈ F(W ).

Since each vertex b in B(D′) = B(D) has an edge b f of D′ with f ∈ F(D′), we have
|B(D′)| ≤ |F(D′)|. Therefore, |B(D)| ≤ |F(D)|+ k.

(2) Suppose α > 1/2. In this case, for each b in B(W ), there is at most one edge b f of
W with f ∈ F(W ).

If W is a twig, then |B(W )| = m. Hence, |B(D)| ≤ m. Since F(D) is non-empty, we
have |B(D)| ≤ m ≤ m(|F(D)|+ k).

Suppose W is a wreath associated to sq where s is the special sequence for α and q a
positive integer.

Consider the case B(D) = B(W ). In this case, D′ =W . Since sq is a periodic sequence
of period m, and by the construction of W , for any path in B(W ) of length m− 1 (there
are m vertices in this path), there is an edge from a vertex in the path to a vertex in F(W ).
Therefore, |B(D)| ≤ m|F(W )|. Since |F(W )| = |F(D′)| = |F(D)|+ k, we have |B(D)| ≤
m(|F(D)|+ k).

Now, consider the case B(D) is a path v0v1 · · ·vp−1 in B(W ). Since D is smooth, there
is an edge v0 f0 of D with f0 ∈ F(D). Because W is associated to sq and sq is a periodic
sequence of period m, for any j with v jm in B(D) there is a vertex f j in F(W ) which is
adjacent to v jm in W . Each f j belongs to F(D′) and f j ̸= f j′ if j ̸= j′ because each f j is a
leaf of W . Therefore, |B(D)|= |B(D′)| ≤ m|F(D′)|= m(|F(D)+ k).

(3) If B(D′) = B(W ) then D′ = W . We have δ (D′/F(D′)) = 0 by Lemma 12 (1) and
Lemma 13 (1). By Fact 1 (1), we have

δ (D/F(D)) = δ (B(D))− e(B(D),F(D))α and
δ (D′/F(D′)) = δ (B(D′))− e(B(D′),F(D′))α.

Also, we have B(D′) = B(D) and e(B(D′),F(D′)) = e(B(D),E(D))+ k by the definition
of defects. Therefore, δ (D/F(D)) = kα .

(4) Similar to (3). If B(D′) is a non-empty proper substructure of B(W ), then δ (D′/F(D′))>
0 by Lemma 12 (2) and Lemma 13 (2). Therefore, δ (D/F(D))> kα . □

Lemma 17. Let W be a twig or a wreath for α , D a smooth connected substructure of W
with 2 or more defects. Let G = A⋊F(D) D where A is non-empty and normal to f . Then G
is normal to f .

Proof. Let k be the number of defects of D. Then δ (D/F(D))≥ kα by Lemma 16 (3), (4).
By Lemma 8 (2), we have

δ (A⋊F(D) D) = δ (A)+δ (D/F(D))≥ δ (A)+ kα ≥ f (|A|)+ km/d ≥ f (2km|A|).

Case α ≤ 1/2. We have |B(D)| ≤ |A|+ k by Lemma 16 (1). So, |A⋊F(D) D| = |A|+
|B(D)| ≤ 2|A|+ k. We have 2km ≥ km+ 2 because k ≥ 2 and m ≥ 1. Hence 2km|A| ≥
(km+2)|A| ≥ 2|A|+ k ≥ |A⋊F(D) D|. Therefore, A⋊F(D) D is normal to f .
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Case α > 1/2. By Lemma 16 (2), we have |B(D)| ≤ m(|A|+ k). So, |A⋊F(D) D| =
|A|+ |B(D)| ≤ |A|+m(|A|+ k) = (m+ 1)|A|+ km. Since α > 1/2 we have m ≥ 2, and
thus km ≥ 4. Hence, 2km > 2km+1. We have

2km|A|> (2km+1)|A|> (m+1)|A|+ km.

Therefore, A⋊F(D) D is normal to f . □

Lemma 18. Let W be a twig or a wreath for α , D a connected substructure of W. Let
G = A⋊F(D) D where A is non-empty and normal to f , and B(D) ̸= B(W ). If D has 1 or
more defects then G is normal to f .

Proof. If D has 2 or more defects then G is normal to f by Lemma 17. So, we can assume
that D has exactly 1 defect.

By Lemma 15 (2), (3) and Lemma 7 (1), it is enough to show that G is normal to f
assuming D is smooth.

Recall that α = m/d < 1 with relatively prime positive integers m and d. We have
δ (A⋊F(D) D)> δ (A)+α by Lemma 8 (2) and Lemma 16 (4). Hence,

δ (A⋊F(D) D)≥ δ (A)+α +1/d ≥ f (|A|)+(m+1)/d ≥ f (2m+1(|A|)).

Case α ≤ 1/2. By Lemma 16 (1), |B(D)| ≤ |A|+1. Since m ≥ 1, we have

2m+1|A|> 2|A|+1 ≥ |A|+ |B(D)|.
Therefore, A⋊F(D) D is normal to f .

Case α > 1/2. By Lemma 16 (2), |B(D)| ≤ m(|A|+1) and m ≥ 2 as α > 1/2. We have
2m+1 > 2(m+1). Therefore,

2m+1|A|> 2(m+1)|A|> |A|+m(|A|+1)≥ |A|+ |B(D)|.
Hence, A⋊F(D) D is normal to f . □

If α ≤ 1/2, we can drop the assumption that D has 1 or more defects in Lemma 18.
This fact will make the proof of Proposition 6 below easy in the case α ≤ 1/2.

Definition 21. Let W be a twig or a wreath for α , A, C graphs and P a set of isolated
vertices of A.

We call C a canonical extension of A by W over P if C can be written as C = A⋊F(W )W
and the following hold:

(1) If |F(W )| = 2 then F(W ) ⊆ P, and if F(W ) ≥ 3 then F(W ) contains at least 3
vertices in P.

(2) Whenever D ⊆ W , D has no defects, D is connected in W , and |F(D)| ≥ 2, then
F(D) contains a vertex in P.

Note that if P′ ⊇ P is another set of isolated vertices of A then C is a canonical extension
of A by W over P′. We sometimes omit the reference to P and/or W .

We call C a semicanonical extension of A over P if

C =C1 ⊗A C2 ⊗A · · ·⊗A Cn

where Ci is a canonical extension of A over P for i = 1, . . ., n with n ≥ 0. If n = 0 then
C = A by convention. We call each Ci a component of C. Hence, n is the number of
components of C. We sometimes omit the reference to P. A canonical extension of A over
P is a semicanonical extension of A over P with one component.

Lemma 19. Let C be a semicanonical extension of A. Then C is a zero-extension of A.
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Proof. Let n be the number of components of C. We prove the statement by induction on n.
If n = 0 then C = A. Hence C is a zero-extension of A by definition. Suppose n = 1. Then
C is a canonical extension of A. Hence, C = A⋊F(W )W where W is a twig or a wreath. we
have A ≤C by Lemmas 9 (2), and 14. We also have δ (C/A) = 0 by Lemmas 8 (1), and 14.
Therefore, C is a zero-extension of A.

Suppose n > 1. Then C = C′⊗A C′′ where C′ is a semicanonical extension of A with
n−1 components and C′′ a canonical extension of A. Both C′ and C′′ are zero-extensions
of A by the induction hypothesis. Therefore, C is also a canonical extension of A by Fact
6. □

Lemma 20. Let W be a twig or a wreath for α , A a graph such that A = A′⊗P where P
is a graph with no edges and |P| > |A′|. Assume that |P| ≥ 5. If |F(W )| ≤ |A| then F(W )
can be embedded in A in a way that A⋊F(W )W is a canonical extension of A over P.

Proof. B(W ) can be written as a path b0b1 · · ·bm−1 or a cycle b0b1 · · ·bkm−1b0 for some k.
Enumerate the vertices in F(W ) as f0, f1, . . ., f|F(W )|−1 in a way that if fi is adjacent to bp
and f j is adjacent to bq with p < q then i < j. If |F(W )| ≤ 5 then embed F(W ) into P. We
can do this by the assumption that |P| ≥ 5.

If |F(W )| ≥ 6, embed each fi with an even index i into P. We can do this because
|F(W )| ≤ |A| and more than half of the vertices of A belongs to P. Embed each fi with an
odd index i into the rest of vertices of A in any way. □

Proposition 5. Let A = A′⊗P with P a non-empty graph with no edges. If G is a semi-
canonical extension of A over P then A′ < G.

Proof. Suppose
G =C1 ⊗A C2 ⊗A · · ·⊗A Cn

where Ci is a canonical extension of A by Wi over P with Wi a twig or a wreath for α for
i = 1, . . ., n.

First, note that A′ < A′⊗P = A and A ≤ G.
Let U be a graph with A′ ⊊U ⊆ G. We can write

U = (U ∩C1)⊗U∩A · · ·⊗U∩A (U ∩Cn)

with U ∩Ci = (U ∩A)⋊F(Di) Di where Di is a substructure of Wi for i = 1, . . . ,n.
If B(Di) is empty for i = 1, . . ., n, we have U =U ∩A. Hence, A′ ⊊U ⊆ A. So, we have

δ (A′)< δ (U) by A′ < A.
Otherwise, we can choose i with 1 ≤ i ≤ n such that B(Di) is non-empty.
We have δ (U/U ∩A) = ∑n

j=1 δ (U ∩C j/U ∩A)≥ δ (U ∩Ci/U ∩A) = δ (Di/F(Di)) by
Fact 2 (1) and Lemma 8 (1).

If Di ̸= Wi, we have δ (Di/F(Di)) > 0 by Lemma 14 and non-emptiness of B(Di).
Hence, δ (U/U ∩A)> 0 by the inequality above. We have δ (U)> δ (U ∩A)≥ δ (A′).

If Di = Wi, then F(Di) = F(Wi). In this case, we have F(Wi) ⊆ U ∩A. Since Ci is a
canonical extension of A by Wi, F(Wi) contains an isolated vertex from P. Hence, A′ ⊊
U ∩A and so δ (A′)< δ (U ∩A). We have δ (U ∩A)≤ δ (U) by A ≤ G. Therefore, δ (A′)<
δ (U). □

Lemma 21. Let C be a canonical extension of A by a wreath W for α where A and W
belong to K f and |F(W )| ≥ 3. Then C belongs to K f .

Proof. Let U be a substructure of C. We show that U is normal to f . We can write
U = (U ∩A)⋊F(D) D with a substructure D of W . By Lemma 15 (2) and (4), it is enough to



20 HIROTAKA KIKYO

show that U is normal to f assuming D is smooth and connected, and F(D) is non-empty.
Since F(D)⊆U ∩A, U ∩A is non-empty. Note that U − (U ∩A) = B(D).

Case B(D) = B(W ). Since we are assuming that |F(W )| ≥ 3, F(W ) has at least 3
isolated vertices of A by Definition 21. Suppose D has at most 1 defect. Then F(D) has
at least 2 isolated vertices in A, and thus U ∩A has 2 isolated vertices. Therefore, U ∩A is
3m|U ∩A|-normal to f by Lemma 5. By Lemma 16, we have |B(D)| ≤ m(|F(D)|+ 1) ≤
2m|U ∩A|. Hence, U = (U ∩A)⋊F(D) D is normal to f by Lemma 4. Suppose D has 2 or
more defects. Then U = (U ∩A)⋊F(D) D is normal to f by Lemma 17.

Case B(D) ̸= B(W ). If D has a defect then U is normal to f by Lemma 18. So, we can
assume that D has no defects. Recall that we are assuming F(D) is non-empty. Suppose
|F(D)|= 1. Since B(D) ̸= B(W ), B(D) is a path. So, U is an extension of U ∩A by a paths.
Hence, U is normal to f by Lemma 7 (1). Now, we can assume that |F(D)| ≥ 2. Since D
has no defects, F(D) contains an isolated vertex of A by (2) in the definition of a canonical
extension of A. Hence, U ∩A is m|U ∩A|-normal by Lemma 5. Since D is smooth with no
defects, we have |B(D)| ≤ m|F(D)| ≤ m|U ∩A| by Lemma 16 (2). Thus, U is normal to
f . □
Lemma 22. Let G =C0 ⊗A C1 where C0 is a canonical extension of A by a wreath W0 for
α , and C1 a canonical extension of A by a wreath W1 for α . Suppose that A, W0 and W1
belong to K f , |F(W0)| ≥ 3 and |F(W1)| ≥ 3. Then G belongs to K f .

Proof. Suppose U ⊆ G = C0 ⊗A C1. We show that U is normal to f . We can write U =
U0 ⊗U∩A U1 where U0 =U ∩C0, and U1 =U ∩C1. We can also write U0 = (U ∩A)⋊F(D0)

D0 with D0 ⊆W0 and U1 = (U ∩A)⋊F(D1) D1 with D1 ⊆W1.
If D0 ̸=W0 and D1 ̸=W1 then U ∩A <U0 and U ∩A <U1 by Lemmas 14 and 8 (1). By

Lemma 21, C1 and C2 belong to K f . Hence, U0 and U1 belong to K f . Therefore, U ∈ K f
by Proposition 1, and thus U is normal to f .

Now, we can assume that D0 = W0 or D1 = W1. By symmetry, we can assume that
D0 =W0. We have U0 = (U ∩A)⋊F(W0)W0. Since F(W0) ⊆ V (U ∩A), U ∩A has at least
2 isolated vertices by Definition 21. U ∩A is 3m|U ∩A|-normal to f by Lemma 5. Since
|B(W0)| ≤ m|F(W0)| ≤ m|U ∩A|, U0 is normal to f .

Now, our aim is to show that U =U0 ⋊F(D1) D1 is normal to f .
By Lemma 15 (4), we can assume that D1 is smooth and connected.
Case D1 has at most 1 defect. Since F(D1) ⊆U ∩A and F(W0) ⊆U ∩A, with Lemma

16, we have |B(W0)|+ |B(D1)| ≤ m(F(W0))+m(|F(D1)|+1)≤ 3m|U ∩A|. Therefore, U
is normal to f by Lemma 4.

Case D1 has 2 or more defects. U =U0 ⋊F(D1) D1 is normal to f by Lemma 17. □
Lemma 23. Let

C0 = A′⊗T1 ⊗T2 ⊗·· ·⊗Tk

where each Ti is a twig for α for i = 1, . . . ,k and A′ a non-empty graph. Put

A = A′⊗F(T1)⊗·· ·⊗F(Tk).

Let P be a set of isolated points of A such that F(T1)⊗ ·· · ⊗F(Tk) ⊆ P. Then C0 is a
semicanonical extension of A over P. Let G =C0 ⊗A C1 where C1 is a canonical extension
of A by a wreath W for α with F(W ) = V (A). Suppose that A′ and W belong to K f and
|F(W )| ≥ 3. Then G belongs to K f .

Proof. We show first that C0 is a semicanonical extension of A over P. Let Ci
0 = A⋊F(Ti) Ti

for i = 1, . . ., k. Then each Ci
0 is a canonical extension of A over P by definition. Now, C0

is a semicanonical extension of A over P where the Ci
0 are the components of C0.
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C0 belongs to K f because any twig belongs to K f and K f has the free amalgamation
property. We also have C1 ∈ K f by Lemma 21. Also, A ≤C0, and A ≤C1 by Lemma 9 (2)
and Fact 2. Hence, A ≤C0 ⊗A C1 = G by Fact 2.

By the definition of C0, we have |C0−A|= km. Since F(Ti)⊆ A and F(Ti) is non-empty
for each i = 1, . . ., k, we have |A| > k. We also have |C1 −A| ≤ m|A| by Lemma 16 (2).
Hence, |G−A| ≤ m(k+ |A|)< 2m|A|.

Let U be a substructure of G = C0 ⊗A C1. We show that U is normal to f . We can
write U = U0 ⊗U∩A U1 where U0 = U ∩C0, and U1 = U ∩C1. We can also write U1 =
(U ∩A)⋊F(D) D where D is a substructure of W . Then U =U0 ⋊F(D) D.

By Lemma 15 (2) and (4), it is enough to show that U is normal to f assuming D is
smooth and connected, and F(D) is non-empty.

Since A ≤C0 ⊗A C1, we have U ∩A ≤U0 ⊗U∩A U1.
By the definition of C0, by renumbering the indices of the Ti, we can write U0 = (U ∩

A′)⊗H1 ⊗ ·· ·⊗Hk where Hi = U ∩Ti for each i, and F(Hi) is non-empty for i = 1, . . .,
k0, and F(Hi) is empty for i = k0 + 1, . . ., k. Put U ′

0 = (U ∩A′)⊗H1⊗ ·· · ⊗Hk0 . Then
U ∩A ⊆U ′

0 and
U0 =U ′

0 ⊗B(Tk0+1)⊗·· ·⊗B(Tk).

Hence,
U = (U ′

0 ⋊F(D) D)⊗B(Tk0+1)⊗·· ·⊗B(Tk).

Note that U ′
0 and B(Ti) for i = k0 + 1, . . ., k belong to K f because U0 ⊆ C0 and C0 ∈ K f

hold. Therefore, in order to show that U is normal to f , it is enough to show that U ′
0⋊F(D)D

is normal to f by the free amalgamation property of K f .
If k0 = 0, then U ′

0 = U ∩A and thus U ′
0 ⊗U∩A U1 = U1 ⊆ C1. Note that U ′

0 ⊗U∩A U1 =
U ′

0 ⋊F(D) D. Hence it is normal to f since C1 ∈ K f .
We can assume that k0 ≥ 1. Then U ∩A has at least 1 isolated vertex. If U ∩A has

only 1 isolated vertex, then U ′
0 is an extension of U ∩A by paths. Hence, U ′

0 ⊗U∩A U1 is an
extension of U1 by paths. Since U1 is normal to f , so is U ′

0 ⊗U∩A U1.
Now, we can assume that U ∩A has at least 2 isolated vertices. Recall that U1 = (U ∩

A)⋊F(D) D where D is a smooth connected substructure of W .
Case D has at most 1 defect. Since F(Hi)⊆U ∩A for i = 1, . . ., k0, and F(D)⊆U ∩A,

with Lemma 16, we have |U ′
0 − (U ∩A)|+ |B(D)| ≤ mk0 +m(|F(D)|+ 1) ≤ 3m|U ∩A|.

Therefore, U ′
0 ⋊F(D) D =U ′

0 ⊗U∩A U1 is normal to f by Lemma 4.
Case D has 2 or more defects. U ′

0 ⋊F(D) D is normal to f by Lemma 17 because U ′
0 is

normal to f . □

Lemma 24. Let C0 ⊗A C1 be a member of K f where C0 is a zero-extension of A, C1 a
canonical extension of A by a wreath W1 for α with F(W1) =V (A). Let

G =C0 ⊗A C1 ⊗A C2 ⊗A · · ·⊗A Cn

where Ci ∼=A C1 for each i = 2, . . ., n. If G is normal to f then G ∈ K f .

Proof. Note that C0 ⊗A C1 and C0 ⊗A C j for j ≥ 2 are isomorphic over C0. So, C0 ⊗A C j
belongs to K f for any j ≥ 1.

We have C1 = A⋊F(W1)W1 with F(W1) =V (A). Let Wi for i ≥ 2 be a wreath isomorphic
to W1 such that Ci = A⋊F(Wi)Wi.

Suppose U ⊆ G.
Case A ⊆U . Since G is normal to f , U is normal to f by Lemma 4.
Case A ̸⊆ U . Then U ∩ A is a proper subset of A. For each i with 0 ≤ i ≤ n, put

Ui = U ∩Ci. Then for i ≥ 1, we have Ui = (U ∩A)⋊F(Di) Di where F(Di) is a proper
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subset of F(Wi) = V (A). Hence, F(Di) < Di by Lemma 14 for each i ≥ 1. We have
U ∩C0 =U0 <U0 ⋊F(Di) Di by Lemma 9. Put U ′

i =U0 ⋊F(Di) Di. Then U0 <U ′
i . Note that

it is possible that U0 =U ′
i . Since U0 ⋊F(Di) Di =U0 ⊗U∩A Ui, we have

U =U ′
1 ⊗U0 · · ·⊗U0 U ′

n.

Since U ′
i =U0 ⊗U∩A Ui is a substructure of C0 ⊗A Ci ∈ K f , U ′

i belongs to K f for i = 1, . . .,
n. Therefore, U belongs to K f by the free amalgamation property. □

With the following proposition and Theorem 5, we get Theorem 8.

Proposition 6. Let A be a graph in K f . Then there is a graph C in K f such that A < C
and C is absolutely closed in K f .

Proof. Suppose A ∈ K f . We can assume that A is non-empty because if we find an abso-
lutely closed structure C in K f then we have /0 <C anyway. Let l0 be an integer such that
any cycle of length l0 or more belongs to K f . Such an integer l0 exists by Proposition 3.
Let l1 be such that l1m ≥ l0. Let T1 be a twig for α . Choose an integer l2 greater than |A|,
l1|F(T1)| and 5. Let W be a wreath for α such that |B(W )|= (|A|+ l2)m. B(W ) belongs to
K f because |B(W )|> l2m > l1m ≥ l0. Hence, W belongs to K f and |F(W )| ≥ |A|+ l2 by
Lemma 11.

Let A1 = A⊗P where P is a graph with no edges and such that |F(W )|= |A|+ |P|. Then
we have l2 ≤ |P|. Therefore, we have |A|< |P|, 5 < |P|, and l1|F(T1)|< |P|. Also, we have
|F(W )|> l2 > 5 > 3.

Let C1 be a canonical extension of A1 by W over P. C1 exists by Lemma 20. Since
A1 = A⊗P belongs to K f by the free amalgamation property, C1 belongs to K f by Lemma
21. Also, C1 is a zero-extension of A1 by Lemma 19. Hence, we have δ (C1) = δ (A1) and
C1 −A1 = B(W ). Therefore, A1 is |B(W )|-normal to f . Let p be a greatest integer u such
that A1 is u-normal to f . This means that A1 is p-critical to f . We have |B(W )| ≤ p since
A1 is |B(W )|-normal to f . Put k = |A|+ l2. Then |B(W )|= km. So, km ≤ p. Let r and q0
be integers such that p = q0m+ r with 0 ≤ r < m. We have 0 < k ≤ q0 since km ≤ p. Let
r1 and q1 be integers such that q0 = q1k+ r1 and 0 ≤ r1 < k. Then q0m = q1(km)+ r1m.

Now, our aim is to show that there is a semicanonical extension of A1 over P in K f with
size |A1|+q0m. Then it will be r-critical to f by Lemma 2 (5).

Claim 1. There is a semicanonical extension C0 of A1 over P such that |C0 −A1| = r1m
and C0 ⊗A1 C1 belongs to K f .

Case r1m ≥ l0. Let W0 be a wreath for α where B(W0) is a cycle of length r1m. B(W0)
belongs to Kα because it has length l0 or more. Since |F(W0)|< |F(W )|= |A1|, there is a
canonical extension C0 of A1 by W0 over P by Lemma 20. We have |C0 −A1|= |B(W0)|=
r1m. Then C0 ⊗A1 C1 belongs to K f by Lemma 22.

Case r1m < l0. If r1 = 0, then we have the claim with C0 = A1.
Suppose r1 > 0. Since l0 ≤ l1m, we have r1 < l1. By the choice of P, we have

r1|F(T1)| < l1|F(T1)| < |P|. Let C0 = A⊗ P′ ⊗ T1 ⊗ ·· · ⊗ Tr1 where Ti is a twig for α
for i = 2, . . ., r1, and P′ a graph with no edges. Since each F(Ti) consists of isolated ver-
tices, by choosing P′ properly, we can assume that P′⊗F(T1)⊗·· ·⊗F(Tr1) = P. Note that
each Ti is isomorphic to T1. C0 is a semicanonical extension of A1 over P and C0 ⊗A1 C1
belongs to K f by Lemma 23. Also, |C0 −A1|= r1|B(T1)|= r1m. Now, we have the claim.

Let C =C0 ⊗A1 C1 ⊗A1 C2 ⊗A1 · · ·⊗A1 Cq1 where Ci ∼=A1 C1 for each i = 2, . . ., q1. Since
C0 is a semicanonical extension of A1 over P by Claim and each Ci is a canonical extension
of A1 over P, C is a semicanonical extension of A1 over P by definition. By the construction,
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|C−A1|= r1m+q1(km) = q0m≤ p. So, C is normal to f since A1 is p-normal to f . Hence,
C belongs to K f by the claim above and Lemma 24. Also, C is a zero-extension of A1 by
Lemma 19. Therefore, C is r-critical by Lemma 2 (5). Since r < m, C is absolutely closed
in K f by Lemma 3.

We also have A <C by Proposition 5. □
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