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Basic Statistics 01
Describing Data
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Describing Data
1. Numerical Measures

 Measures of Location
 Measures of Dispersion
 Correlation Analysis

2. Frequency Distributions
 (Relative) Frequency Distribution
 Histogram
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Measures of Location
Arithmetic mean
Weighted mean
Geometric mean
Median
 The midpoint of the values after they have been ordered 

from the smallest to the largest

Mode
 The value of the observation that appears most frequently
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Central location
Population mean

Sample mean
 Properties of the arithmetic mean
 Every data set has a unique mean.
All the values are included in computing the mean.
 The mean is affected by outliers.
 The arithmetic mean is the only measure of central 

tendency where the sum of the deviations of each value 
from the mean is zero. 
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Measures of Dispersion
Range
Mean deviation
Variance
 Population variance

 Sample variance

Standard deviation (s.d.)
coefficient of variation
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Properties of Variance & S.D.
The major characteristics of variance are:
 All values are used in the calculation.
 Not influenced by extreme values.
 The units are the square of the original units.

The population (sample) standard deviation σ
(s) is the square root of the population 
(sample) variance.
 The units are the same as the original ones.
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The Coefficient of Correlation
The (sample) Coefficient of Correlation (r) is a 
measure of the strength of the linear relationship 
between two variables.

 It can range from -1 to 1.
 Values of -1 or 1 indicate perfect & strong correlation.
 Values close to 0 indicate weak correlation.
 Negative values indicate an inverse relationship and 

positive values indicate a direct relationship.
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Frequency Distribution

A frequency distribution is a grouping of 
data into mutually exclusive categories 
showing the number of observations in 
each class.
A relative frequency distribution shows 
the percent of observations in each class.
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Example 1
Dr. K is a professor of ABC University.  He 
wishes to prepare a report  showing the 
number of hours per week students spend 
studying.  About his 30 students, he 
determines the number of hours each student 
studied last week.  

15.0, 23.7, 19.7, 15.4, 18.3, 23.0, 14.2, 20.8, 
13.5, 20.7, 17.4, 18.6, 12.9, 20.3, 13.7, 21.4, 
18.3, 29.8, 17.1, 18.9, 10.3, 26.1, 15.7, 14.0, 
17.8, 33.8, 23.2, 12.9, 27.1, 16.6.
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Hours Frequency
f 

Relative 
Frequency  

7.5 up to 12.5 1 1/30=.0333 
12.5 up to 17.5 12 12/30=.400 
17.5 up to 22.5 10 10/30=.333 
22.5 up to 27.5 5 5/30=.1667 
27.5 up to 32.5 1 1/30=.0333 
32.5 up to 37.5 1 1/30=.0333 

TOTAL 30 30/30=1 
 

 
 
 
  
 
 
  

Example 1 continued
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Histogram for Studying-Hours
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y It’s easy to grasp the 
features of the data, 
such as the location 
and the dispersion.
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Basic Statistics 02
Probability Distributions
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Probability Distributions
1. Probability Distributions

 Random variable and probability distribution.
 The mean, variance, and standard deviation of 

a (discrete) probability distribution.
2. Normal Distribution

 Normal & Standard Normal Distribution
 Calculating z value
 Determining the probability
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Random Variables & Probability Dist.

A random variable is a numerical value 
determined by the outcome of an experiment. 
A probability distribution is the listing of all 
possible outcomes of an experiment and the 
corresponding probability.
 The sum of the probabilities of the various 

outcomes is 1.
 The probability of a particular outcome is between 

0 and 1.
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Mean & Variance of a Probability Dist.
The mean（expected value）
 The long-run average value of the random variable


 where µ is the mean and P(x) is the probability of the 
various outcomes x.

The variance 
 The amount of spread (variation) of a distribution

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Characteristics of a Normal Dist.
Bell-shaped
Symmetrical
Asymptotic

µ

Mean, median, and
mode are equal

Theoretically, 
curve extends to 
infinity
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The Standard Normal Distribution
Standard normal distribution 
 The normal dist. with mean 0 & variance 1 
 z-value: standardized index, σ

µ−
=

Xz

0

Mean = 0
Variance & s.d. = 1

The relation of z-value 
& probability is on the 
normal distribution 
table.
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Example 1 
The monthly starting salaries of recent MBA 
graduates follows the normal distribution with a 
mean of $2,000 and a standard deviation of $200.  
What is the z-value for a salary of $2,200?  

00.1
200$

000,2$200,2$
=

−
=

−
=

σ
µXz

0.2
200$

000,2$600,1$
−=

−
=

−
=

σ
µXz

What is the z-value corresponding to $1,600? 

What % of the population below these salaries? 



Areas under the Normal Curve

A rule of thumb
 About 68 percent of the area under the normal 

curve is within one standard deviation of the 
mean. (µ ± σ)

 About 95 percent is within two standard 
deviations of the mean. (µ ± 2σ)

 Practically all is within three standard 
deviations of the mean. (µ ± 3σ)
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Between:
±1σ - 68.26%
±2σ - 95.44%
±3σ - 99.74%

µ σµ +µ σ− 2

Areas under the Normal Curve
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Example 2
The daily water usage per person in a city 
follows a normal distribution with a mean of 
20 gallons and a standard deviation of 5 
gallons.  About 68 percent of those living in a 
city will use how many gallons of water? 

About 68% of the daily water usage will lie between 
15 and 25 gallons since 20±5.
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Example 3
What is the probability that a person 
from this city selected at random will 
use between 20 and 25 gallons per day?

00.0
5

2020
=

−
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−
=

σ
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1
5

2025
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−
=

σ
µXz
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Example 3 continued

The area under a normal curve between a z-
value of 0 and a z-value of 1 is 0.3413 
(=0.8413-0.5) 
We conclude that 34.13% of the residents 
use between 20 and 25 gallons of water per 
day.
See the following diagram. 
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EXAMPLE 3 continued

0 < x < 1

P(0 < z < 1)
= 0.3413
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EXAMPLE 3 continued

What percent of the population use 
between 15 and 30 gallons per day?

1
5

2015
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2
5

2030
=

−
=

−
=

σ
µXz



Special Program: Pre-training 26

Example 3 continued

The area below the z-value of –1 is 0.9773.
The area below the z-value of 2 is 0.1587.
Since 0.9773 – 0.1587, the result is 0.8186.
We conclude that 82% of the residents use 
between 15 and 30 gallons of water per day.
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Basic Statistics 03
Sampling & Central Limit Theorem
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Sampling & C.L.T.

1. The distribution of the sample mean
2. The Central Limit Theorem 
3. The application of CLT
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1. Distribution of the Sample Means

The sampling distribution of the sample mean
is a probability distribution consisting of all 
possible sample means of a given sample size 
selected from a population.  
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The distribution of sample mean

population
with

N observations
x1,…,xN

Sample 1
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2,…, x1

n
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Population Distribution

µ iX
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Sampling Dist. of the Sample Means

µ iX

n = 1

1 < n < N

n = N
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2. Central Limit Theorem

For any population with a mean µ and a 
variance σ2, the sampling distribution of 
the means of all possible samples of size n
will be approximately normally distributed, 
with larger sample size n.
The mean of the sampling distribution equal 
to µ and the variance equal to σ2/n.
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CLT The Population Distribution

Uniform Distribution
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CLT The Sample Distribution of Sample mean

The Normal Distribution
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CLT 0 the case of X~N（µ, σ2）

If a population follows the normal 
distribution, the sampling distribution of 
the sample mean will also follow the 
normal distribution for any sample size.
To determine the probability a sample mean 
falls within a particular region, use:
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CLT 1 the case of X~ non-normal dist.(µ, σ2）

If the population isn’t normally 
distributed (with known σ2) and sample 
size is large, the sample means will follow 
the normal distribution. (See the above 
figure.)
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CLT 2 the case of X~N（µ, unknown σ2）

If the population follows the normal 
distribution but σ2 is unknown, the sample 
means will follow the t distribution.
 But with larger sample size (at least n >30), the 

sample means will follow the normal 
distribution.
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CLT 3 the case of X~ non-N （µ, unknown σ2）

If the population isn’t normally 
distributed with unknown σ2 and sample 
size is large, the sample means will follow 
the t distribution. (with larger sample size, 
the normal distribution)

)1,0(N
ns

X d→
−µ
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Example 1

The mean selling price of a gallon of 
gasoline in the United States is $1.30.  
The distribution is positively skewed, with 
a standard deviation of $0.28.  
What is the probability of selecting a 
sample of 35 gasoline stations and finding 
the sample mean within $0.08?  
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Example 1 continued

The first step is to find the z-values 
corresponding to $1.22 and $1.38 (= 1.30 ±
0.08).  These are the two points within 
$0.08 of the population mean.
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3528.0$
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Example 1  continued

Next we determine the probability of a z-
value between -1.69 and 1.69.  It is:

9090.)4545(.2)69.169.1( ==≤≤− zP

We would expect about 91 percent of the 
sample means to be within $0.08 of the 
population mean.
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