Basic Statistics 03

Sampling & Central Limit Theorem

Sampling & C.L.T.

1. The distribution of the sample mean

2. The Central Limit Theorem

3. The application of CLT

1. Distribution of the Sample Means

The *sampling distribution of the sample mean* is a probability distribution consisting of all possible sample means of a given sample size selected from a population.

$$E(\overline{X}) = E\left(\frac{1}{n}\sum_{i}X_{i}\right) = \frac{1}{n}\sum_{i}E(X_{i}) = \frac{n\mu}{n} = \mu$$

 $Var(\overline{X}) = Var\left(\frac{1}{n}\sum_{i}X_{i}\right) = \frac{1}{n^{2}}\sum_{i}Var(X_{i}) = \frac{n\sigma^{2}}{n^{2}} = \frac{\sigma^{2}}{n}$

*in the case of finite population, $Var(\overline{X}) = \frac{\sigma^2}{n} \cdot \frac{N-n}{N-1}$

Population Distribution

μ

 X_{i}

Sampling Dist. of the Sample Means

2. Central Limit Theorem

For *any* population with a mean μ and a variance σ^2 , the *sampling distribution of the means* of all possible samples of size *n* will be approximately normally distributed, with larger sample size *n*.

The mean of the sampling distribution equal to μ and the variance equal to σ^2/n .

CLT The Population Distribution

CLT The Sample Distribution of Sample mean

CLT 0 the case of $X \sim N(\mu, \sigma^2)$

If a population follows the normal distribution, the sampling distribution of the sample mean will also follow the normal distribution for any sample size.
To determine the probability a sample mean falls within a particular region, use:

CLT 1 the case of X~ non-normal dist.(μ , σ^2)

* If the population *isn't normally distributed* (with known σ^2) and *sample size is large*, the sample means will follow the normal distribution. (See the above figure.)

CLT 2 the case of X-N(μ , unknown σ^2)

- If the population follows the normal distribution but σ² is unknown, the sample means will follow the t distribution.
 - But with larger sample size (at least n >30), the sample means will follow the normal distribution.

$$t = \frac{\overline{X} - \mu}{s/\sqrt{n}} \sim t(d.f.) \qquad t = \frac{\overline{X} - \mu}{s/\sqrt{n}} \xrightarrow{d} N(0,1)$$

CLT 3 the case of $X \sim non-N(\mu, unknown \sigma^2)$

If the population isn't normally distributed with unknown σ² and sample size is large, the sample means will follow the t distribution. (with larger sample size, the normal distribution)

$$\frac{X-\mu}{s/\sqrt{n}} \xrightarrow{d} N(0,1)$$