1. Consider the following models to measure the return to education:

Model 1: $\ln(wage) = \beta_0 + \beta_1 educ + \beta_2 exper + u$ Model 2: $\ln(wage) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 female + u$ Model 3: $\ln(wage) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 female + \beta_4 female^* educ + \beta_5 female^* exper + u$ where *wage* is hourly wage, *educ* is years of formal education, *exper* is years of workforce experience, and *female* is a binary variable taking on the value one for female and the value zero for male. Answer the following questions with the table of the estimation results.

- (a) Comparing to Model 1, Model 3 includes female-related factors (*female*, *female***educ*, *female***exper*). State the null hypothesis that these female-related variables have no effect on $\ln(wage)$. What are *d.f.* and *q* in F statistic for this case? Dependent Variable: $\ln(wage)$ Watable 1 2 educ 0.161 0.140
- (b) Based on question (a), are female-related variables jointly significant?
- (c) The standard error for *female* is missing in the second column. What is the *t* statistic for the coefficient on the variable? Can we conclude that the variable is significant?
- (d) Assume that Model 1 satisfies the Gauss-Markov assumptions. If people with higher educational background tend to have less work experience, can we say that the slope estimate obtained from the simple regression of ln(*wage*) on *educ* is on average higher than 0.161 from the first column of the table?

Variable	1	2	3
educ	0.161	0.140	0.164
	(0.048)	(0.046)	(0.047)
exper	0.018	0.015	0.034
	(0.010)	(0.010)	(0.012)
female		-0.380	0.543
		(?)	(1.535)
female*educ			-0.020
			(0.114)
female*exper			-0.041
			(0.018)
С	-0.464	0.049	-0.613
	(0.688)	(0.709)	(0.753)
R-squared	0.419	0.514	0.652
obs.	20	20	20

standard errors in parentheses

- 2. Answer the following questions from the textbook.
 - (a) Problem 1 & Computer Exercise C3 in Chapter 8.
 - (b) Problem 1 & Computer Exercise C1 in Chapter 12.
 - (c) Computer Exercise C2 in Chapter 15.

Due day: August 21 (submit your answer sheet attached to email)