

Ch	1.12 Serial Correlation in Time Series
1.	Properties of OLS with Serially Correlation
2.	Testing for Serial Correlation
3.	Correcting for Serial Correlation with
	Strictly Exogeneous Regressors
4.	Differencing & Serial Correlation*
5.	Serial Correlation-Robust Inference
6.	Heteroskedasticity in Time Series
	Regression*
	Econometrics 2

Cont. C	Correcting for S.C.	
Con	sider that since $y_t = \beta_0 + \beta_1 x_t + u_t$,	
then	$y_{t-1} = \beta_0 + \beta_1 x_{t-1} + u_{t-1}$	
If yo and s	bu multiply the second equation by ρ , subtract it from the first, we get	
y, w	$t_t - \rho y_{t-1} = (1 - \rho)\beta_0 + \beta_1(x_t - \rho x_{t-1}) + e_t$ (12.28) where $e_t = u_t - \rho u_{t-1}, t \ge 2$.	
• Tl wi	his quasi-differencing results in a model thout serial correlation.	
	Econometrics	9

Feasible GLS Estimation	
	1
Problem with this method is that we a know a so we need to get an estimate	10n t first
• We can just use the estimate obtained fr	om
regressing residuals on lagged residuals.	UIII
• Depending on how we deal with the t	first
observation, this is either called Coch	rane-
Orcutt or Prais-Winsten estimation.	
	10

♦ C	Often both Cochrane-Orcutt and Prais-
W	insten are implemented iteratively.
🔷 T	his basic method can be extended to allow
fo	r higher order serial correlation, $AR(q)$.
	Most statistical packages will automatically
	allow for estimation of AR models without
	having to do the quasi-differencing by hand.

1.	Estimate normal OLS to get residuals, root MSE
2.	Run the auxiliary regression of x_{11} on x_{12} ,, x_{1k}
3.	Form \hat{a}_i by multiplying these residuals with \hat{a}_i
4.	Choose g – say 1 to 3 for annual data, then
	$\hat{v} = \sum_{i=1}^{n} \hat{a}_{i}^{2} + 2\sum_{i=1}^{g} [1 - h/(g+1)] \left(\sum_{i=1}^{n} \hat{a}_{i} \hat{a}_{i-h} \right)$
	$t=1 \qquad h=1 \qquad (t=h+1)$