

1 1		ues
1.	Stationary & Weakly Dependent Time Series	
2.	Asymptotic Properties of OLSE	
3.	Using Highly Persistent Time Series in Regression Analysis	
4.	Dynamically Complete Models & the Absence of Serial Correlation*	
5.	The Homoskedasticity Assumption for Time Series Models*	

٠	A stochastic process is <i>covariance</i>
	tationary if
1.	$E(x_t)$ is constant,
2.	$Var(x_t)$ is constant and
3.	for any $t, h \ge 1$, $Cov(x_t, x_{t+h})$ depends only on h and not on t .
	Thus, this weaker form of stationarity requires only that the mean and variance are constant across time, and the covariance just depends or the distance across time.

weakiy Dej	pendent Time Series
A stationary t	time series is weakly dependent
if x_t and x_{t+h} a	re "almost independent" as h
increases.	
 If for a covariant 	riance stationary process $Corr(x_t, x_{t+h})$
$\rightarrow 0 \text{ as } h \rightarrow 0$	∞, we'll say this covariance
	ocess is asymptotically uncorrelated
(almost equiv	alently, weakly dependent).
 So, we can a 	pply the Law of Large Numbers
(LLN) & CL'	T to sample averages.

MA(1) Process
♦ A / [M.	noving average process of order one A(1)] can be characterized as one where
	$x_t = e_t + \alpha_1 e_{t-1}, t = 1, 2, \dots$ (11.1)
	h e_t being an <i>i.i.d.</i> sequence with mean 0 variance σ_e^2 .
a	This is a stationary, weakly dependent sequence s variables 1 period apart are correlated, but 2 eriods apart they are not.

A	R(1) Process
	An autoregressive process of order one
	[AR(1)] can be characterized as one where
	$y_t = \rho_1 y_{t-1} + e_t, t = 1, 2, \dots$ (11.2)
	with <i>e</i> , being an <i>i.i.d.</i> sequence with mean 0
	and variance σ_e^2 .
	• For this process to be weakly dependent, it must be the case that $ \rho_1 < 1$.
	• Corr $(y_p y_{t+h}) = $ Cov $(y_p y_{t+h})/(\sigma_y \sigma_y) = \rho_1^h$ (11.4)
	which becomes small as <i>h</i> increases.

Trends R	evisited
A trendin	g series
 cannot b over time 	e stationary, since the mean is changing e.
■ can be w	eakly dependent.
If a series	is weakly dependent and is
stationary	about its trend, we will call it a
trend-stat	ionary process.
As long	as a trend is included, all is well.

Asymptotic Normality of OLSE	
4.	Weaker assumption of homoskedasticity: Var $(u_t/x_t) = \sigma^2$, for each t (TS4')
5.	Weaker assumption of no serial correlation $E(u_t u_s \mathbf{x}_t, \mathbf{x}_s) = 0$ for $t \neq s$ (TS5')
	With these assumptions, we have asymptotic normality and the usual standard errors, <i>t</i> statistics, <i>F</i> statistics and <i>LM</i> statistics are valid.

Ce	ont. Random Walks
<	A random walk is a special case of what's known as a <i>unit root process</i> .
<	Note that trending and persistence are different things – a series can be trending but weakly dependent, or a series can be highly persistent without any trend.
	A <i>random walk with drift</i> is an example of a highly persistent series that is trending.

Cont. Transforming Persistent Series	
	In a random walk case, where $\{e_t\}$ is <i>i.i.d.</i> with zero mean and variance σ^2 ,
	$\Delta y_t = y_t - y_{t-1} = e_t t = 2,3,\dots (11.24)$
	• If $\{e_i\}$ is weakly dependent process, then $\{y_i\}$ is also weakly dependent.
	To decide whether a time series is I(1) or not, statistical tests can be used.
	• $H_0: \rho_1 = 1 \text{ and } H_1: \rho_1 < 1 \text{ (see ch.18)}$