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Heteroskedasticity

y = β0 + β1x1 + β2x2 + . . . + βkxk + u

Var (u | x) = σi
2
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Ch.8 Heteroskedasticity

1. Consequences of Heteroskedasticity for 
OLS

2. Heteroskedasticity-Robust Inference after 
OLS Estimation

3. Testing for Heteroskedasticity
4. Weighted Least Squares Estimation
5. The Linear Probability Model Revised*

3Econometrics 3

8.1 Consequences of Heteroskedasticity

What is Heteroskedasticity?
The assumption of homoskedasticity implies 
that conditional on the explanatory variables, 
the variance of the unobserved error, u, was 
constant.

MLR 5: Var (u | x1, x2, …, xk ) = σ2

If this is not true, that is if  the variance of u
is different for different values of the x’s, 
then the errors are heteroskedastic.
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Example of Heteroskedasticity

x3

. .
E(y|x) = β0 + β1x
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OLSE with Heteroskedasticity

If we do not assume homoskedasticity…
OLSE is still unbiased and consistent.

R2 & adjusted R2 is also unaffected by 
heteroskedasticity.

The standard errors of the estimates are 
biased.

We can not use the usual t or F statistics.
OLSE is no longer BLUE.
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8.2 Hetero.-Robust Inference for OLSE

We have to find the unbiased standard errors 
of the estimates in heterosckedasticity.
→ Heterosckedasticity-Robust S.E.

This s.e. is valid at least asymptotically, even if 
the form of unknown heterosckedasticity.
The t or F statistics calculated with this s.e. are 
valid asymptotically.
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Variance with Heteroskedasticity 1
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Variance with Heteroskedasticity 2
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Robust Standard Errors

Now that we have a consistent estimate of 
the variance, the square root can be used as 
a standard error for inference.

We call these Heterosckedasticity-robust 
standard errors, or White’s consistent s.e.

( ) 2

22 ˆˆˆ...
j

iij
j SSR

ur
esEst ∑=β

10Econometrics 10

Cont. Robust Standard Errors

It is important to remember that these 
robust standard errors only have 
asymptotic justification.

With small sample sizes, t statistics 
formed with robust standard errors will 
not have a distribution close to the t, and 
inferences will not be correct.
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A Robust LM Statistic
1. Run OLS on the restricted model and save the 

residuals ŭ.
2. Regress each of the excluded variables on all of 

the included variables (q different regressions) 
and save each set of residuals ř1, ř2, …, řq

3. Regress a variable defined to be = 1 on ř1 ŭ, ř2 ŭ, 
…, řq ŭ, with no intercept.

4. The LM statistic is n – SSR1, where SSR1 is the 
sum of squared residuals from this final 
regression.
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8.3 Testing for Heteroskedasticity
Essentially we want to test 

H0: Var(u|x1, x2,…, xk) = σ2, 
which is equivalent to

H0: E(u2|x1, x2,…, xk) = E(u2) = σ2

If we assume the relationship between u2 and xj
will be linear, we can test as a linear restriction.

So, for u2 = δ0 + δ1x1 +…+ δk xk + v (8.12)
this means testing

H0: δ1 = δ2 = … = δk = 0  (8.13)
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The Breusch-Pagan Test 

After regressing the residuals squared on 
all of the x’s, we can use the R2 to form an 
F or LM test.
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The White Test
The White test allows for nonlinearities by 
using squares and crossproducts of all the x’s. 
(residual)2 = δ0+δ1x1+δ2x2+δ3x1

2

+δ4x2
2+δ5x1x2+ v  (8.19)’

Still just using an F or LM to test whether all the 
xj, xj

2, and xjxh are jointly significant.
⇔The Breusch-Pagan test will detect any linear 

forms of heteroskedasticity.

15Econometrics 15

Alternate form of the White test
The fitted values from OLS, ŷ, are a function 

of all the x’s, so ŷ2 will be a function of the 
squares and crossproducts and ŷ and ŷ2 can 
proxy for all of the xj, xj

2, and xjxh. 

Regress the residuals squared on ŷ and ŷ2

and use the R2 to form an F or LM statistic.
Note only testing for 2 restrictions now.

(8.20)    ˆˆˆ 2
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8.4 Weighted Least Squares

While it’s always possible to estimate 
robust standard errors for OLS estimates, if 
we know something about the specific form 
of the heteroskedasticity, we can obtain 
more efficient estimates than OLS.
The basic idea is going to be to transform 
the model into one that has homoskedastic
errors – called weighted least squares.
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Case of form to a multiplicative constant

Suppose the heteroskedasticity can be 
modeled as Var(u|x) = σ2h(x), where the trick 
is to figure out what h(x) ≡ hi looks like
Because we know Var(u|x) = σ2hi,

So, if we divided our whole equation by h(x), 
we would have a model where the error is 
homoskedastic. See (8.25) & (8.26).

( ) 2σ=xhuVar ii
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Generalized Least Squares

Estimating the transformed equation by 
OLS is an example of generalized least 
squares (GLS). 
GLS will be BLUE in this case.
GLS is a weighted least squares (WLS) 
procedure where each squared residual is 
weighted by the inverse of Var(ui|xi).
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Feasible GLS
The form of the heteroskedasticity is 
unknown in most cases, so we need to 
estimate h(xi).
Typically, we start with the assumption of a 
fairly flexible model, such as

Var(u|x) = σ2exp(δ0 + δ1x1 + …+ δkxk). (8.30)
Our assumption implies that 
u2 = σ2exp(δ0 + δ1x1 + …+ δkxk)v

where E(v|x) = 1, then E(v) = 1
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Cont. Feasible GLS
From (8.30), we can write

ln(u2) = α0 + δ1x1 + …+ δkxk + e. (8.31)
where E(e) = 1 and e is independent of x.

Now, we can use û as an estimate of u, and the inverse of 
exponential fitted values (1/ĥ = 1/exp(ĝ)) as the weight.

Summing up,
1. Run the original OLS model, save the residuals, û, square 

them and take the log
2. Regress ln(û2) on all of the independent variables and get 

the fitted values, ĝ
3. Do WLS using 1/exp(ĝ) as the weight
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WLS Wrapup
When doing F tests with WLS, form the 

weights from the unrestricted model and use 
those weights to do WLS on the restricted 
model as well as the unrestricted model.
Remember we are using WLS just for 

efficiency – OLS is still unbiased & consistent.
Estimates will still be different due to sampling 

error, but if they are very different then it’s 
likely that some other Gauss-Markov 
assumption is false.
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Logarithm in Heteroskedasticity
Under heteroskedasticity, we assume:

Var[yi|xi] = E[yi – E[yi|xi] |xi]2 = σi
2 (a.1)

E[yi|xi] = β0 + β1xi ≡ μi. (a.2)
By Taylor series expansion, we can get

f(yi) ≈ f(μi) + f’(μi)(yi – μi). (a.3)
Here, since f(μi) can be treated as nonrandom 
variable under conditional x, 

E[f(yi)|xi] = f(μi). (a.4)
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Cont. Logarithm in Heteroskedasticity
Var[f(yi)|xi] = E[f(yi) – E[f(yi)|xi] |xi]2 ←(a.1)

= E[f(yi) – f(μi) |xi]2 ←(a.4)

= E[f’(μi)(yi – μi) |xi]2 ←(a.3)

= {f’(μi)2}E[(yi – μi) |xi]2

= {f’(μi)}2σi
2 ←(a.1)

If we assume f(yi) = ln(yi) & σi
2 = σ2E[yi|xi]2,

{f’(μi)}2σi
2  = {1/μi}2σ2μi

2 ←(a.2)

= σ2 (Homoskedasticity)


