Multiple Regression Analysis

\[y = \beta_0 + \beta_1x_1 + \beta_2x_2 + \ldots + \beta_kx_k + u \]

4. Further Issues

Ch. 6 Multiple Regression: Further Issues

1. Effects of Data Scaling on OLS Statistics
2. More on Functional Form
3. More on Goodness-of-Fit & Selection of Regressors
4. Prediction & Residual Analysis*

6.1 Effects of Data Scaling

Redefining Variables

Changing the scale of the variable will lead to a corresponding change in the scale of the coefficients and standard errors, but no change in the significance or interpretation. → see table 6.1.

Cont. Redefining Variables

- If \(y \) is multiplied by \(c \), its coefficient is divided by \(c \).
- If \(y \) is multiplied by \(c \), all OLS coefficients is multiplied by \(c \).
- Neither \(t \) nor \(F \) statistics are affected by changing the units of measurement of any variables.
- If the variables appears in logarithmic form, changing unit of measurement does not affect the slope coefficient.

<table>
<thead>
<tr>
<th>Table 6.1: Effects of Data Scaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Independent Variables</td>
</tr>
<tr>
<td>cigs</td>
</tr>
<tr>
<td>packs</td>
</tr>
<tr>
<td>female</td>
</tr>
<tr>
<td>intercept</td>
</tr>
<tr>
<td>Observations</td>
</tr>
<tr>
<td>R-Squared</td>
</tr>
<tr>
<td>MSE</td>
</tr>
<tr>
<td>SSR</td>
</tr>
</tbody>
</table>
Effects of Data Scaling

<table>
<thead>
<tr>
<th>Dependent Independent</th>
<th>(y)</th>
<th>(\hat{e}y)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>(\beta_1 (s_{x_1}))</td>
<td>(c \beta_1 (s_{x_1}))</td>
<td>(\beta_1 (s_{x_1}/d))</td>
</tr>
<tr>
<td>(d \hat{x}_1)</td>
<td></td>
<td></td>
<td>(\hat{\beta}1 (s{d}))</td>
</tr>
<tr>
<td>(x_2)</td>
<td>(\beta_2 (s_{x_2}))</td>
<td>(c \beta_2 (s_{x_2}))</td>
<td>(\beta_2 (s_{x_2}/d))</td>
</tr>
<tr>
<td>Intercept</td>
<td>(\beta_0 (s_{\hat{y}}))</td>
<td>(c \beta_0 (s_{\hat{y}}))</td>
<td>(\beta_0 (s_{\hat{y}}/d))</td>
</tr>
<tr>
<td>R-squared</td>
<td>(R^2)</td>
<td>(R^2)</td>
<td>(R^2)</td>
</tr>
<tr>
<td>SSR</td>
<td>SSR</td>
<td>(c^2 * SSR)</td>
<td>SSR</td>
</tr>
</tbody>
</table>

Standard errors in parentheses.

Beta Coefficients

- Idea is to replace \(y \) and each \(x \) variable with a standardized version — subtract mean and divide by standard deviation.
- Coefficient reflects standard deviation of \(y \) for a one standard deviation change in \(x \).
 - We can compare the magnitudes of the resulting beta coefficients and conclude that “which variable is most important,” etc.
 - Whether we use standardized or unstandardized variables does not affect statistical significance.

6.2 More on Functional Form

- **Functional Forms**
 - OLS can be used for relationships that are not strictly linear in \(x \) and \(y \) by using nonlinear functions of \(x \) and \(y \) — will still be linear in the parameters.
 - the natural log of \(x, y \) or both
 - quadratic forms of \(x \)
 - interactions of \(x \) variables

Interpretation of Log Models

- **6-2a Logarithmic Functional Forms**
 - \(\ln(y) = \beta_0 + \beta_1 \ln(x) + \epsilon \)
 - \(\beta_1 \) is the elasticity of \(y \) with respect to \(x \)
 - \(\ln(y) = \beta_0 + \beta_1 x + \epsilon \)
 - \(\beta_1 \) is approximately the percentage change in \(y \) given a 1 unit change in \(x \)
 - \(y = \beta_0 + \beta_1 \ln(x) + \epsilon \)
 - \(\beta_1 \) is approximately the change in \(y \) for a 100 percent change in \(x \)

Why use log models?

- Log models are invariant to the scale of the variables since measuring percent changes.
- They give a direct estimate of elasticity.
- For models with \(y > 0 \), the conditional distribution is often heteroskedastic or skewed, while \(\ln(y) \) is much less so.
- The distribution of \(\ln(y) \) is more narrow, limiting the effect of outliers.
Some Rules of Thumb for “log”

- What types of variables are often used in log form?
 - Dollar amounts that must be positive
 - Very large variables, such as population
- What types of variables are often used in level form?
 - Variables measured in years
 - Variables that are a proportion or percent

Quadratic Models

- 6-2b Models with Quadratics
 - For a model of the form \(y = \beta_0 + \beta_1 x + \beta_2 x^2 + u \), we can’t interpret \(\beta_1 \) alone as measuring the change in \(y \) with respect to \(x \), we need to take into account \(\beta_2 \) as well, since \(\frac{\partial \hat{y}}{\partial x} \approx \hat{\beta}_1 + 2\hat{\beta}_2 x \)

More on Quadratic Models

- For the case of the coefficient on \(x > 0 \) and the coefficient on \(x^2 < 0 \), \(y \) is increasing in \(x \) at first, but will eventually turn around and be decreasing in \(x \) (see fig.6.1).
- For the case of the coefficient on \(x < 0 \) and the coefficient on \(x^2 > 0 \), \(y \) is decreasing in \(x \) at first, but will eventually turn around and be increasing in \(x \) (see fig.6.2).
- For both case, the turning point will be at \(x^* = \hat{\beta}_1 / (2\hat{\beta}_2) \)

Interaction Terms

- 6-2c Models with Interaction Terms
 - For a model of the form \(y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + u \) we can’t interpret \(\beta_i \) alone as measuring the change in \(y \) with respect to \(x_i \), we need to take into account \(\beta_i \) as well, since \(\frac{\partial y}{\partial x_i} = \hat{\beta}_i + \beta_i x_j \)
 - To summarize the effect of \(x_i \) on \(y \), we typically evaluate the above at average of \(x_j \).

6.3 More of Goodness-of-Fit

Adjusted R-Squared

- Recall that the \(R^2 \) will always increase as more variables are added to the model.
- The adjusted \(R^2 \) takes into account the number of variables in a model, and may decrease.
 \[
 R^2 = 1 - \frac{SSR/(n-k-1)}{SST/(n-1)} = 1 - (1-R^2) \cdot \frac{n-1}{n-k-1} \tag{6.22}
 \]

Cont. Adjusted R-Squared

- Most PC packages will give you both \(R^2 \) and adj-\(R^2 \).
- You can compare the fit of 2 models (with the same \(y \)) by comparing the adj-\(R^2 \).
- However, you cannot use the adj-\(R^2 \) to compare models with different \(y \)’s.
 - e.g. \(y \) vs. \(\ln(y) \).
It is important not to fixate too much on adj-
R^2 and lose sight of theory and common sense.

- If economic theory clearly predicts a variable
 belongs, generally leave it in the model.
- Don’t want to include a variable that prohibits a
 sensible interpretation of the variable of interest –
 remember ceteris paribus interpretation of
 multiple regression.

* e.g. housing price = $f(\# \text{ of rooms}, \text{square footage})$

In a regression of traffic fatalities
on state beer taxes (and other
factors), one should not directly
control for beer consumption.

\[
\text{fatalities} = f(\text{tax, beercons, ...})
\]

In a regression of family health
expenditures on pesticide usage
among farmers, one should not
control for doctor visits.

\[
\text{hexpend} = f(\text{pestusage, docvisit, ...})
\]

In a regression of house prices on
house characteristics, one would
include price assessments if the
purpose of the regression is to
study their validity; otherwise
one would not include them.

1. \[
\text{hprice} = f(\text{bdrms, assess, ...})
\]
2. \[
\text{hprice} = f(\text{bdrms, ...})
\]