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‘4.1 Sampling Distributions of OLSE

@ In Ch.3, we learned that OLSE is BLUE
under the Gauss-Markov assumption.

@ In order to do classical hypothesis testing,
we need to add another assumption (beyond
the Gauss-Markov assumptions).

@ Assume that u is independent of Xy, X,,..., X,
and u is normally distributed with zero
mean and variance o>

u~N(0,6* MLR.6

Eci

'CLM Assumptions

@ We can summarize the population
assumptions of CLM as follows

YIX~N (B + Xy +..+ BX, 0%)

@ Large sample will let us drop normality
assumption, because of Central Limit
Theorem (CLT).

m CLT: The sum of independent random variables,
when standardized by its standard deviation, has a

distribution that tends to standard normal as the
sample size grows.

Ec

The homoskedastic normal distribution with
~a single explanatory variable

y
flyx)

E(Y[X) = g + pix

—

\ Normal
distribdtions

Xy Xy
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‘Normal Sampling Distributions

Theorem 4.1
Under the CLM assumption s, conditional on

the sample values of the independen t variables

B ~Ngvar(g ) @
6,-5)
Therefore, ~——+-+% ~ N(0,1).
erefore W (0,1)
,[? ; is distribute d normally because it is a

linear combinatio n of the errors.
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4.2 Testing Hypotheses: t Test

‘Theorem 4.2
Under the CLM assumptions,

(ﬁ" -/ j)Ntnkl. (4.3)
se |

Note thisis a t distribution (not normal dist.)
because we have to estimate by 6°.
Note the degreesof freedom:n—k —1.
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Cont. The t Test

@ Knowing the sampling distribution for the
standardized estimator allows us to carry
out hypothesis tests.

@ Start with a null hypothesis, for example,
H,: ,6’1 =0 4.4)
= The null hypothesis means that X; has no effect
on Y, controlling for other independent
variables.

- Cont. The t Test

@ The statistic we use to test (4.4) is called
“the” t statistic of estimate /3

® Then, we will use our t statistic along with a
rejection rule to determine whether to accept
the null hypotheses, H,,.

Eci

~ t Test: procedure

@ Besides our null, H,, we need an alternative
hypothesis, H,, and a significance level.

@ H, may be one-sided, or two-sided.
= H;: f>0and H;: B <0 are one-sided
= H: B # 0 is a two-sided alternative

@ If we want to have only a 5% probability of
rejecting H,, if it is really true, then we say our
significance level is 5%.

Ec

Cont. t Test: procedure

@ Having picked a significance level, a, we
look up the (1 — &) percentile in a t
distribution with n — k — 1 d.f. and call this c,
the critical value.

= We can reject the null hypothesis if the t
statistic is greater than the critical value.

m If the t statistic is less than the critical value
then we fail to reject the null.

One-Sided Alternatives

Yi=5o+ PiXipt o BXict Ui

Hy: =0, H;: >0

Fail to reject

\ (1 o) reject

| a
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Two-Sided Alternatives
[ Yi=fot PXut ..+ BXyct+ U

Hp: f=0, Hi: f#0

fail to reject

reject

\ a2

reject

‘Summary for Hy: £;=0

@ The alternative is usually assumed to be
two-sided.

@ If we reject the null, we typically say, “X; is
statistically significant at the & % level”.
@ If we fail to reject the null, we typically say,

“Xj 1s statistically insignificant at the & %
level”.

Testing other hypotheses

@ A more general form of the t statistic
recognizes that we may want to test
something like

Hy B=ga. (4.12)
@®In this case, the appropriate t statistic is

t—@(_—aiy) (4.13),

~

self;

where a i=0 for the standard test

Eci

Computing p-values for t tests

@ An alternative to the classical approach is to
ask, “what is the smallest significance level at
which the null would be rejected?”

@ So, compute the t statistic, and then look up
what percentile it is in the appropriate t
distribution — this is the p-value.

@ Most computer packages will compute the p-
value, assuming a two-sided test (H,: 4 = 0).
= [f'you want a one-sided alternative, just divide

the two-sided p-value by 2.

Ec

Economic vs. statistical significance

@ Check for statistical significance.

@ Discuss economic or practical importance.

= Small t & economic importance may be due to
small sample.

— You can use more “liberal” significance level.

= Significant, wrong sign & economic importance
could result from omitting variable bias or sample
selection bias.

—Rethink the model or the data nature.
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, 4.3 Confidence Intervals

@ Another way to use classical statistical
testing is to construct a confidence interval
using the same critical value as was used for
a two-sided test.

@ A (1 - @) % confidence interval is defined
as

Brexselp)  (4.16)

. a N L el
where C is the [1 - 5] percentileinat,_, , distribution
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4.4 Testing a Linear Combination

@ Suppose instead of testing whether f3, is
equal to a constant, you want to test if it is
equal to another parameter, that is

Hy: B, = p. (4.18)
@ Use same basic procedure for forming a t
statistic; e 'BL_ ﬁi (4.20)
se ﬂl - ﬂz
@ Usually, it’s hard to calculate it by hand. So,
more generally, you can always restate the
problem to get the test you want.
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Example:

@ Suppose you are interested in the difference
of return by academic record.
In(w) = £, + Bjc + pyuniv + gexper +u (4.17)
Hy: 5= B (4.18) or
Hpy: 6,=5-5=0 (424) = B =06+p,

@ so substitute in and rearrange
In(w) = £, + 6, jc + S, (jc + univ) + Syexper + u
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Cont. Example

@ This is the same model as originally, but
now you get a standard error for 3, — S, = 6,
directly from the basic regression.

@ Any linear combination of parameters
could be tested in a similar manner.

= Other examples of hypotheses about a single
linear combination of parameters:

Bi=1+p, Bi=5p, fi=-12p etc.
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f 4.5 Multiple Linear Restrictions

@ Everything we’ve done so far has involved
testing a single linear restriction, (e.g. S, =0
orfi=p)

@ However, we may want to jointly test
multiple hypotheses about our parameters.

= A typical example is testing “exclusion
restrictions” — we want to know if a group of
parameters are all equal to zero.
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Testing Exclusion Restrictions

@ Now the null & alternative hypothesis
might be something like

Ho: Beqe1 =0, .., £=0.
H,: H, is not true.
= We can’t just check each t statistic separately,
because we want to know if the q parameters
are jointly significant at a given level — it is
possible for none to be individually significant
at that level.
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Cont. Exclusion Restrictions

@ To do the test, we need to estimate the
“restricted model” without Xy_q, ..., X, as
well as the “unrestricted model” with all X’s.
(unrestricted model)

Y=Lt Xt fegXiq e HAX U (4.34)
(restricted model)
Y=L+ Bt ot fogiq T U (4.36)
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Cont. Exclusion Restrictions

@ Intuitively, we want to know if the change
in SSR is big enough to warrant inclusion of
Xk-q+l’, ceey Xk

F = (SSRr _SSRUr )/q (4'37)’

SSR,, /(n—k—1)
where SSR, is the sum of squared residuals from
the restricted model and SSR, is the sum of
squared residuals from the unrestricted model.
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The F statistic

@ The F statistic is always positive, since the
SSR, can’t be less than the SSR,,.

@ Essentially the F statistic is measuring the
relative increase in SSR when moving from
the unrestricted to restricted model.

= (= number of restrictions = df, — df ,
= n-k-1=df,

Cont. The F statistic

@ To decide if the increase in SSR when we
move to a restricted model is “big enough”
to reject the exclusions, we need to know
about the sampling distribution of our F stat.

@ Not surprisingly, F ~ F; .., where g is
referred to as the numerator degrees of

freedom and n — k — 1 as the denominator
degrees of freedom.

Eci
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Cont. The F statistic
f(F) Reject Hj at a

significance level
ifF>c

Fail-to-reject area

Rej?ct area
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'The R? form of the F statistic

@ Because the SSR’s may be large and unwieldy, an
alternative form of the formula is useful.

@ We use the fact that SSR = SST(1 — R?) for any

regression, so we can substitute in for SSR, and
SSR,-

Ruzr_Rr2 /q
1_Ruzr /(n_-k_l)

where again r is restricted and ur is unrestricted.

F= (4.41),

Econometrics
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‘Opverall Significance

@ A special case of exclusion restrictions is to
test that none of the regressors has an effect
ony.

Hp: fi= B=..= =0 (4.44)

@ Since the R? from a model with only an
intercept will be zero, the F statistic is
simply,

R%/k

(1-R*)/(n—k-1) (446)

Econometrics

F=
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F Statistic Summary

@ Just as with t statistics, p-values can be
calculated by looking up the percentile in
the appropriate F distribution.

@If only one exclusion is being tested, then
F = t2, and the p-values will be the same.

4.6 Reporting Results
’ Dependent Variable: logisalary)
Independent Variables [ i . (2)
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