

Ch	.4 Multiple Regression: Inference
1.	Sampling Distributions of OLSE
2.	Testing Hypotheses: The t test
3.	Confidence Intervals
4.	Testing Hypotheses about a Single Linear Combination of the Parameters
5	Testing Multiple Restrictions: F test
6.	Reporting Regression Results
	Econometrics 2

(CLM Assumptions
٢	 We can summarize the population assumptions of CLM as follows
	$y/\mathbf{x} \sim N \left(\beta_0 + \beta_1 x_1 + + \beta_k x_k, \sigma^2\right)$
	Large sample will let us drop normality assumption, because of <i>Central Limit Theorem</i> (CLT).
	• CLT : The sum of independent random variables, when standardized by its standard deviation, has a distribution that tends to standard normal as the
	sample size grows.

4.2 Testing Hypotheses: <i>t</i> Test	
Theorem 4.2	
Under the CLM assumptions,	
$\frac{\left(\hat{\beta}_{j}-\beta_{j}\right)}{se\left(\hat{\beta}_{j}\right)} \sim t_{n-k-1}.$ (4.3)	
Note this is a <i>t</i> distribution (not normal di	ist.)
because we have to estimate σ^2 by $\hat{\sigma}^2$.	
Note the degrees of freedom: $n - k - 1$.	
Econometrics	7

Cont. The	+ Test		
\bigcirc	1 1051		
Knowing standardi out hypo	g the sampling zed estimator thesis tests.	g distribution allows us to	for the carry
♦ Start wit	h a <i>null hypo</i>	thesis, for ex	ample,
	$H_0: \beta_i = 0$	(4.4)	
 The nu on y, co variable 	ll hypothesis m ontrolling for ot es.	eans that <i>x_j</i> has ner independen	no effect it
	Economite		0

t Test: proc	edure
Besides our r hypothesis, H	full, H_0 , we need an <i>alternative</i> 1, and a <i>significance level</i> .
• H_1 may be or	ne-sided, or two-sided.
• $H_1: \beta_j > 0$ and	d H ₁ : $\beta_j < 0$ are one-sided
• $H_1: \beta_j \neq 0$ is a	a two-sided alternative
 If we want to rejecting H₀ if significance left 	have only a 5% probability of Fit is really true, then we say or evel is 5%.

🔶 Ha	aving picked a significance level, α , we
loc	bk up the $(1 - \alpha)^{\text{th}}$ percentile in a t
dis	tribution with $n - k - 1$ <i>d.f.</i> and call this <i>c</i>
the	critical value.
	We can reject the null hypothesis if the <i>t</i> statistic is greater than the critical value.
	If the <i>t</i> statistic is less than the critical value then we fail to reject the null.

Example:		
Suppose vo	ou are interested in t	he difference
of return by	academic record.	
$\ln(w) = \beta_0 +$	$\beta_1 jc + \beta_2 univ + \beta_3 expe$	er + u (4.17)
$H_0: \beta_1 = \beta_2,$	(4.18) or	
$H_0: \theta_1 = \beta_1 -$	$\beta_2 = 0 (4.24) \implies \beta_1$	$= \theta_1 + \beta_2,$
< so substitu	te in and rearrange	
$\ln(w) = \beta_0 +$	$\theta_1 i c + \beta_2 (i c + u n i v)$	$+ \beta_2 exper + u$
	15 7 2 0 7	

Cont. Exclusion Restrictions	
To do the test, we need to estimate the	
"restricted model" without x_{k-q+1}, \ldots, x_k , as	
well as the "unrestricted model" with all <i>x</i> 's.	
(unrestricted model)	
$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_{k \cdot q} x_{k \cdot q} + \ldots + \beta_k x_k + u (4.34)$	
(restricted model)	
$y = \beta_0 + \beta_1 x_1 + \dots + \beta_{k-q} x_{k-q} + u (4.36)$	
Econometries 24	

Cont. Exclusion Restrictions	
• Intuitively, we want to know if the c in SSR is big enough to warrant incl x_{k-q+1}, \dots, x_k .	hange usion of
$F \equiv \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)} (4.37),$	
where SSR_r is the sum of squared residua the restricted model and SSR_{ur} is the sum squared residuals from the unrestricted m	Ils from 1 of 1 odel.
Econometrics	25

Instag with	t statistics in values can be
calculated by	r looking up the percentile in the <i>F</i> distribution.
• If only one end $F = t^2$, and the function of the function	xclusion is being tested, then he <i>p</i> -values will be the same.

Deper	dent Variable:	log(salary)	
Independent Variables	(1)	(2)	(3)
log(sales)	.224 (.027)	.158 (.040)	.188 (.040
log(mktval)		.112 (.050)	.100 (.049
profmarg		0023 (.0022)	002
ceoten			.017 (.005
comten			0092 (.0032
intercept	4.94 (0.20)	4.62 0.25)	4.57 (0.25)
Observations R-squared	177	177	177