

Ch	.2 The simple regression model
1.	Definition of the simple regression model
2.	Deriving the OLS estimates
3.	Mechanics of OLS
4.	Units of measurement & functional form
5.	Expected values & variances of OLSE
6.	Regression through the origin
	Econometrics 2

Equation (2.)	1), $v = \beta_0 + \beta_1 x + \mu$, defines the
Simple Regr	ession model.
In the mode	l, we typically refer to
■ y as the Dep	pendent Variable
• x as the Ind	ependent Variable
• β s as parar	neters, and
• <i>u</i> as the error	or term.

Terminology for Simple Regression			
у	x		
Dependent variable	Independent variable		
Explained variable	Explanatory variable		
Response variable	Control variable		
Predicted variable	Predictor variable		
Regressand	Regressor		

A S	Simple Assumption for <i>u</i>	
۲	The average value of u , the error term, in	
t	the population is 0. That is, $E(u) = 0$.	
	 This is not a restrictive assumption, since we can always use β₀ to normalize E(u) to 0. 	
۲	To draw ceteris paribus conclusions about	i
I	now x affects y, we have to hold all other	
f	factors (in <i>u</i>) fixed.	
	╺┥╍┟╸┽╺┽╺╌┟╸┽╸ _┍ ╶┨╍┝ <u>┰</u> <u>┦╸┽╺┥</u> ╍┝╺┽╍┥╍┿╸┼╸┟╺┽╍┟╸┨╸┿╸	6

Zero Conditional Mear	n
• We need to make a crucial about how u and x are related	assumption ed.
We want it to be the case the something about <i>x</i> does not information about <i>u</i> , so that	nat knowing give us any they are
completely unrelated. That • $E(u x) = E(u) = 0$ (2.5&2.6	is, that 6), which implies
• $E(y x) = \beta_0 + \beta_I x$ (PRF)	(2.8)
Econometrics	7

More OLS	
Intuitively, sample point residuals is a term is called	OLS is fitting a line through the s such that the <i>sum of squared</i> as small as possible, hence the d least squares.
The <i>residua</i>	$l, \hat{u}, $ is an estimate of the error
term, <i>u</i> , and fitted line (sa	is the difference between the ample regression function) and
the sample p	oint.

Cont. Algebraic Properties	
2. The sample covariance between the	
regressors and the OLS residuals is zer	0
$\sum_{i=1}^{n} x_i \hat{u}_i = 0 (2.31)$	
3. The OLS regression line always goes	
through the mean of the sample	
$\overline{y} = \hat{\beta}_0 + \hat{\beta}_1 \overline{x}$	
Econometrics	20

Cont. Algebraic Properties	
We can think of each observation as being a	nade
up of an explained part, and an unexplained	part,
$y_i = \hat{y}_i + \hat{u}_i$ (2.32) Then we define the follow	wing :
$\sum (y_i - \overline{y})^2 \equiv \text{SST} (2.33)$	
$\sum (\hat{y}_i - \bar{y})^2 \equiv \text{SSE} (2.34)$	
$\sum \hat{u}_i^2 \equiv \text{SSR} (2.35)$	
Then, $SST = SSE + SSR$ (2.36)	
Econometrics	21

Joodness	5-01-ГIL		
♦ It's usef	ul we thin	k about	how well the
sample r	egression	line fits	sample data.
From (2.	36),		
\mathbf{P}^2 -	$_SSE_{-1}$	SSR	(2.38)
	$=\overline{SST}^{-1}$	SST	(2.38).
♦R ² indica	ates the fra	action of	f the sample
variation	in y_i that	is expla	ined by the
model.			

2.5 Means & Variance of OLSE
• Now, we view $\hat{\beta}_i$ as estimators for the parameters β_i that appears in the population, which means properties of the distributions of $\hat{\beta}_i$ over different random samples from the population.
Unbiasedness of OLS
• Unbiased estimator: An estimator whose expected
value (or mean of its sampling distribution) equals
the population value (regardless of the population
value).
Fronometrics 24

201	<i>it.</i> Unbiasedness of OLS
A	ssumption for unbiasedness
1.	Linear in parameters as $y = \beta_0 + \beta_1 x + u$
2.	Random sampling { (x_i, y_i) : $i = 1, 2,, n$ }, Thus, $y_i = \beta_0 + \beta_1 x_i + u_i$
3.	Sample variation in the x_i , thus $\sum (x_i - \overline{x})^2 > 0$
4.	Zero conditional mean, $E(u/x) = 0$

Cont. Unbiasedness of OLS	
◆ In order to think about unbiasedness, we	
need to rewrite our estimator in terms of	
the population parameter.	
$\hat{\beta}_{i} = \frac{\sum(x_{i} - \bar{x})y_{i}}{\sum(x_{i} - \bar{x})^{2}} = \beta_{i} + \frac{\sum(x_{i} - \bar{x})u_{i}}{\sum(x_{i} - \bar{x})^{2}} (2.49), (2.52)$	
then $E(\hat{\beta}_1) = \beta_1 + \frac{\sum (x_i - \bar{x})}{\sum (x_i - \bar{x})^2} \cdot E(u_i \mid x) = \beta_1$ (2.53)	
* we can also get $E(\hat{\beta}_0) = \beta_0$ in the same way.	
Econometrics 26	

4	
٠	Now we know that the sampling
	distribution of our estimate is centered
	around the true parameter.
	 We want to think about how spread out this distribution is.
	• It is much easier to think about this variance under an additional assumption, so assume
5.	$Var(u/x) = \sigma^2$ (Homoskedasticity)

C	ont. Variance of OLSE
<	\mathbf{r} σ^2 is also the unconditional variance, called
	the error variance, since
	• $\operatorname{Var}(u/x) = \operatorname{E}(u^2/x) - [\operatorname{E}(u/x)]^2$
	• $E(u x) = 0$, so $\sigma^2 = E(u^2/x) = E(u^2) = Var(u)$
	• And σ , the square root of the error variance, is
	called the standard deviation of the error.
<	Then we can say
	$E(y x) = \beta_0 + \beta_1 x$ and $Var(y x) = \sigma^2$

Cont. Error Variance Estimate	
$\hat{u}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$	
$= \left(\beta_0 + \beta_1 x_i + u_i\right) - \hat{\beta}_0 - \hat{\beta}_1 x_i$	
$= u_i - \left(\hat{\beta}_0 - \beta_0\right) - \left(\hat{\beta}_1 - \beta_1\right) x_i$	
Then, an unbiased estimator of σ^2 is	
$\hat{\sigma}^2 = \frac{1}{(n-2)} \sum \hat{u}_i^2$ (2.61)	
Fernometrics	34

