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The Simple Regression Model

y = 0 + 1x + u
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2.1 Definition of the model

Equation (2.1), y = 0 + 1x + u, defines  the 
Simple Regression model. 

In the model, we typically refer to 
 y as the Dependent Variable

 x as the Independent Variable

 s as parameters, and

 u as the error term.
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The Concept of Error Term

u represents factors other than x that affect y.

If the other factors in u are held fixed, so that 
u = 0, then y = 1x.

Ex. 2.1: yield = 0 + 1fertilizer + u (2.3)
 u includes land quality, rainfall, etc.

Ex. 2.2: wage = 0 + 1educ + u (2.4)
 u includes experience, ability, tenure, etc.
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A Simple Assumption for u

The average value of u, the error term, in 
the population is 0.  That is, E(u) = 0.
 This is not a restrictive assumption, since we 

can always use 0 to normalize E(u) to 0.

To draw ceteris paribus conclusions about 
how x affects y, we have to hold all other 
factors (in u) fixed.
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Zero Conditional Mean 

We need to make a crucial assumption 
about how u and x are related.
We want it to be the case that knowing 
something about x does not give us any 
information about u, so that they are 
completely unrelated.  That is, that
 E(u|x) = E(u) = 0 (2.5&2.6), which implies
 E(y|x) = 0 + 1x  (PRF) （2.8）
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2.2 Deriving the OLSE

Basic idea of regression is to estimate the 
population parameters from a sample.

Let {(xi,yi): i = 1, …, n} denote a random 
sample of size n from the population.

For each observation in this sample, it will 
be the case that 

yi = 0 + 1xi + ui. (2.9)
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Population regression line, sample data points
and the associated error terms

E(y|x) = 0 + 1x
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Deriving OLSE using MM
To derive the OLS estimates, we need to 
realize that our main assumption of 
 E(u|x) = E(u) = 0 also implies that

 Cov(x,u) = E(xu) = 0 
 Because Cov(X,Y) = E(XY) – E(X)E(Y)    (B.27)

Now we prepare 2 restrictions to estimate s.
 E(u) = 0 (2.10)

 E(xu) = 0 (2.11)
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Cont. Deriving OLSE using MM
Since u = y – 0 – 1x, we can rewrite; 

E(u) = E(y – 0 – 1x) = 0 (2.12)

E(xu) = E[x(y – 0 – 1x)] = 0 (2.13)

These are called moment restrictions
 The approach to estimation implies imposing the 

population moment restrictions on the sample 
moments. It means, a sample estimator of E(X), 
the mean of a population distribution, is simply 
the arithmetic mean of the sample.
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More Derivation of OLS

We want to choose values of the parameters 
that will ensure that the sample versions of 
our moment restrictions are true

The sample versions are as follows:
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Cont. More Derivation of OLS
Given the definition of a sample mean, and 
properties of summation, we can rewrite the first 
condition as follows
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Summary of OLS slope estimate

The slope estimate is the sample 
covariance between x and y divided by the 
sample variance of x.

If x and y are positively (negatively) 
correlated, the slope will be positive 
(negative).

x needs to vary in our sample. 
 See (2.18) & Figure (2.3)
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More OLS

Intuitively, OLS is fitting a line through the 
sample points such that the sum of squared 
residuals is as small as possible, hence the 
term is called least squares.

The residual, û, is an estimate of the error 
term, u, and is the difference between the 
fitted line (sample regression function) and 
the sample point.
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Alternate approach to derivation

Given the intuitive idea of fitting a line, we 
can set up a formal minimization problem.
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2.3 Properties of OLS 

Algebraic Properties of OLS
1. The sum of the OLS residuals is zero.   

Thus, the sample average of the OLS 
residuals is zero as well.
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Cont. Algebraic Properties
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2. The sample covariance between the 
regressors and the OLS residuals is zero
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3. The OLS regression line always goes 
through the mean of the sample
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Cont. Algebraic Properties
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Goodness-of-Fit

It’s useful we think about how well the 
sample regression line fits sample data.

From (2.36), 

R2 indicates the fraction of the sample 
variation in yi that is explained by the 
model.
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2.4 Measurement Units & Function Form

If we use the model y* = 0* + 1* x* + u* 
instead of y = 0 + 1 x + u, we get

where y* = c y and x* = d x. Similarly, 

where y* = ln y and x* = ln x. 
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2.5 Means & Variance of OLSE

Now, we view      as estimators for the parameters 
i that appears in the population, which means 
properties of the distributions of      over different 
random samples from the population.

Unbiasedness of OLS
Unbiased estimator: An estimator whose expected 
value (or mean of its sampling distribution) equals 
the population value (regardless of the population 
value).

i̂

i̂
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Cont. Unbiasedness of OLS

Assumption for unbiasedness
1. Linear in parameters as y = 0 + 1x + u

2. Random sampling {(xi, yi): i = 1, 2, …, n},

Thus, yi = 0 + 1xi + ui

3. Sample variation in the xi, thus

4. Zero conditional mean, E(u|x) = 0 

0)(
2
 xxi
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Cont. Unbiasedness of OLS

In order to think about unbiasedness, we 
need to rewrite our estimator in terms of 
the population parameter.
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Unbiasedness Summary

The OLS estimates of 1 and 0 are 
unbiased.
Proof of unbiasedness depends on our 4 
assumptions – if any assumption fails, then 
OLS is not necessarily unbiased.
Remember unbiasedness is a description of 
the estimator – in a given sample our 
estimate may be “near” or “far” from the 
true parameter.
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Variances of the OLS Estimators

Now we know that the sampling 
distribution of our estimate is centered 
around the true parameter.
 We want to think about how spread out this 

distribution is.

 It is much easier to think about this variance 
under an additional assumption, so assume

5. Var(u|x) = 2 (Homoskedasticity)
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Cont. Variance of OLSE

2 is also the unconditional variance, called 
the error variance, since
 Var(u|x) = E(u2|x) - [E(u|x)]2

 E(u|x) = 0, so 2 = E(u2|x) = E(u2) = Var(u)

 And , the square root of the error variance, is 
called the standard deviation of the error.

Then we can say

E(y|x)=0 + 1x and Var(y|x) = 2
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Cont. Variance of OLSE
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The larger the error variance, 2, the larger 
the variance of the slope estimate.

The larger the variability in the xi, the 
smaller the variance of the slope estimate.

As a result, a larger sample size should 
decrease the variance of the slope estimate.
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Estimating the Error Variance

We don’t know what is the error variance, 
2, because we don’t observe the errors, ui.

What we observe are only the residuals, ûi, 
not the errors, ui.

So we can use the residuals to form an 
estimate of the error variance.
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Cont. Error Variance Estimate
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Cont. Error Variance Estimate
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2.6 Regression through the Origin
Now, consider the model without a intercept:

(2.63).
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Solving the FOC to the minimization 
problem, OLS estimated slope is
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* Recall that a intercept can always normalize E(u) 
to 0 in the model with 0.


