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Abstract. The reflection of stationary subsets of Pω1 (H) for all sets H ⊇ ω1,
which we denote by SRω1 , is known to imply that λω = λ for all regular car-
dinal λ ≥ ω2. In particular, it implies 2ω ≤ ω2 and the Singular Cardinal
Hypothesis. For a regular cardinal κ ≥ ω2, the reflection of stationary sub-
sets of Pκ(H) for all H ⊇ κ is inconsistent with ZFC. But its restriction to
stationary sets consisting of internally approachable sets, which we denote by
SRκ � IA, is consistent with ZFC. In this paper, we study consequences of
SRκ � IA on cardinal arithmetic.

We prove that SRκ � IA does not give any bound on 2ω1 , while it implies
λω = λ for all regular cardinal λ ≥ κ+. We also prove that SRκ � IA>ω

does not give any bound on 2ω and does not imply the Singular Cardinal
Hypothesis, where SRκ � IA>ω denotes the reflection of stationary subsets of
Pκ(H) consisting of internally approachable sets of uncountable cofinalities.

1. Introduction

So far, the reflection of stationary subsets of Pω1(H) for H ⊇ ω1 has been
extensively studied by many set theorists. First, we recall this.

For a set H ⊇ ω1, let SRω1
(H) be the following stationary reflection principle:

Foe every stationary X ⊆ Pω1
(H), there is R ⊆ H such that |R| =

ω1 ⊆ R and X ∩ Pω1
(R) is stationary in Pω1

(R).

Let SRω1
be the assertion that SRω1

(H) holds for every set H ⊇ ω1. SRω1
is often

called the Weak Reflection Principle.
Foreman-Magidor-Shelah [7] proved that SRω1

follows from Martin’s Maximum
(MM). Moreover, many interesting consequences of MM follows from SR. For
example, SRω1 implies that NSω1 is presaturated ([7]), Chang’s Conjecture holds
([7]), 2ω ≤ ω2 (Todorčević) and the Singular Cardinal Hypothesis (SCH) holds
(Shelah [18]). By the latter two consequences, λω = λ for all regular cardinal
λ ≥ ω2 under SRω1

.
In this paper, we study consequences of generalization of SRω1

on cardinal arith-
metic.
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Recall that the following straightforward generalization of SRω1 is inconsistent
with ZFC. For a regular uncountable cardinal κ and a set H ⊇ κ, let SRκ(H) be
the following statement:

Foe every stationary X ⊆ Pκ(H), there is R ⊆ H such that |R| =
κ ⊆ R and X ∩ Pκ(R) is stationary in Pκ(R).

Let SRκ be the assertion that SRκ(H) holds for every set H ⊇ κ. Feng-Magidor
[4] and Foreman-Magidor [6] proved that SRκ fails for any regular cardinal κ ≥ ω2.
Also, Shelah-Shioya [19] proved that SRκ(κ

+) fails.
On the other hand, it was proved in [7] that the restriction of SRκ to station-

ary sets consisting of internally approachable sets is consistent. Let us recall this
restriction of SRκ.

Let IA be the class of all internally approachable (i.a. for short) sets. (See §3
for the definition of internally approachability.) Suppose κ is a regular uncountable
cardinal, and C is a subclass of IA. For a regular carddinal λ ≥ κ, let SRκ(Hλ)�C

be the following statement:

For every stationary X ⊆ Pκ(Hλ) ∩ C, there is R ⊆ Hλ such that
|R| = κ ⊆ R and X ∩ Pκ(R) is stationary in Pκ(R).

Also, let SR∗
κ(Hλ) �C be the statement obtained from SRκ(Hλ) �C by requiring R

to be i.a. of length κ in addition. Let SRκ �C (SR∗
κ �C resp.) be the assertion that

SRκ(Hλ)�C (SR∗
κ(Hλ)�C resp.) holds for every regular λ ≥ κ.

It is not hard to see that SRω1
� IA is equivalent to SRω1

. (See §3.) So SRκ � IA

can be seen as a natural generalization of SRω1
. In [6], it was proved that for any

regular uncountable cardinal κ, if a supercompact cardinal > κ is Lévy collapsed
to κ+, then SRκ � IA holds. In fact, κ+ is generically supercompact with respect to
<κ-closed forcings in this model, and this generic supercompactness of κ+ implies
SR∗

κ � IA. (See §4.)
We study consequences of SRκ � IA on cardinal arithmetic. We also discuss

SRκ �C for C = IAω, IA>ω, where IAω and IA>ω denote the class of all i.a. sets of
cofinality ω and of cofinality > ω, respectively. (See §3 for the definitions of IAω

and IA>ω.)
First, in §4, we show that the generic supercompactness of κ+ with respect to

<κ-closed forcings does not give any bound on 2µ for a regular µ ≥ κ (Proposition
4.3). So we have the following.

(I) SR∗
κ � IA does not give any bound on 2µ for a regular µ ≥ κ.

In §4, we also prove that if κ+ is generically supercompact with respect to < κ-
closed forcings, then λ<κ = λ for every regular λ ≥ κ. In particular, this generic
supercompactness of κ+ implies that 2<κ = κ and SCH holds above κ.

Next, in §5, we prove the following. (Theorem 5.1)
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(II) SRκ � IAω implies that λω = λ for all regular cardinal λ > κ. In particular,
it implies that 2ω ≤ κ+ and SCH holds above κ.

This can be proved by a straightforward generalization of the proof of the fact that
λω = λ for all regular λ ≥ ω2 under SRω1

.
Since the generic supercompactness of κ+ with respect to < κ-closed forcings

imply that 2<κ = κ, it is natural to ask whether SRκ � IA gives any bound on 2µ

for an uncountable regular µ < κ. In §6, we give a negative answer to this question
(Corollary 6.2 (2)).

(III) For any regular uncountable cardinal µ < κ, SR∗
κ � IA does not give any

bound on 2µ.

In fact, we will prove that, under some mild assumption, SR∗
κ � IA is preserved by

Add(µ, ρ) for any regular uncountable µ < κ and any ordinal ρ, where Add(µ, ρ)

denotes the forcing adding ρ-many subsets of µ (Theorem 6.1 (2)). (See §2 for
Add(µ, ρ).)

Another natural question arising from (II) is whether SRκ � IA>ω has any con-
sequences on cardinal arithmetic. Does it give any bound on 2ω or imply SCH? In
§6 and §7, we also give the following negative answer to this question. (Corollary
6.2 (1) and 7.2).

(IV) SR∗
κ � IA>ω does not give any bound on 2ω.

(V) SR∗
κ � IA>ω does not imply SCH above κ.

For (IV), we prove that, under some mild assumption, SR∗
κ � IA>ω is preserved

by Add(ω, ρ) for any ordinal ρ (Theorem 6.1 (1)). For (V), we prove that, under
another mild assumption, SR∗

κ � IA>ω is preserved by the Prikry forcing above κ

(Theorem 7.1).
To prove Theorem 6.1, we show that the class of internally approachable sets

have some rigidity under forcings (Proposition 6.3). This may be of independent
interest.

Prior to prove the above mentioned results, we present our notation and basic
facts in Set Theory in §2 and basics on internally approachable sets in §3.

2. Preliminaries

In this section, we present our notation and basic facts in Set Theory.
First, we give miscellaneous notation.
For a set A of ordinals, we let cf(A) denote the cofinality of 〈A,<〉, that is, the

smallest order-type of a cofinal subset in 〈A,<〉. For a regular cardinal µ, Cf(µ)
denotes the class of all limit ordinals of cofinality µ.

Let A be a set of ordinals. For a regular cardinal µ, we say that A is µ-closed
if sup(B) ∈ A for any B ⊆ A of order-type µ. For a cardinal ν, we say that A

is < ν-closed if A is µ-closed for all regular µ < ν. For α ∈ A which is not the
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largest element of A, let sucA(α) denote the successor of α in A, i.e. sucA(α) =

min(A \ (α+ 1)).
Suppose M is a structure in which a well-ordering of its universe is definable.

Then, for a subset A of the universe of M, we let SkM(A) denote the Skolem hull
of A in M, i.e. the smallest M ≺ M with A ⊆ M .

Next, we give our notation and basic facts on Pκ(H).
Let κ be a regular uncountable cardinal and H be a set with |H| ≥ κ. Then

Pκ(H) is the set of all x ⊆ H of cardinality < κ. In this paper, we adopt Jech’s
notion of club and stationary subsets of Pκ(H). That is, Z ⊆ Pκ(H) is club in
Pκ(H) if Z is ⊆-cofinal in Pκ(H), and

⋃
ξ<µ xξ ∈ Z whenever 〈xξ | ξ < µ〉 is a

⊆-increasing sequence of elements of Z of length µ < κ. X ⊆ Pκ(H) is said to be
stationary if X ∩ Z 6= ∅ for any club Z ⊆ Pκ(H).

We will use the following fact without any reference.

Fact 2.1 ((1) Kueker [12], (3) Menas [14]). Let κ be a regular uncountable cardinal,
H be a set with κ ⊆ H and X be a subset of Pκ(H).

(1) X is stationary in Pκ(H) if and only if for any function f : <ωH → H

there is x ∈ X such that x ∩ κ ∈ κ and x is closed under f , i.e. f(a) ∈ x

for all a ∈ <ωx.
(2) Suppose H ′ ⊇ H. Then X ⊆ Pκ(H) is stationary in Pκ(H) if and only if

the set {x′ ∈ Pκ(H
′) | x′ ∩H ∈ X} is stationary in Pκ(H

′).

From (2) of the above fact, we have the following.

Lemma 2.2. Suppose ω1 ⊆ H ⊆ H ′ and SRω1(H
′) holds. Then SRω1(H) holds.

Proof. Suppose X is a stationary subset of Pω1(H). We find R ⊆ H such that
|R| = ω1 ⊆ R and X ∩ Pω1(R) is stationary.

Let X ′ := {x′ ∈ Pω1
(H ′) | x′ ∩ H ∈ X}. Then X ′ is stationary in Pω1

(H ′)

by Fact 2.1 (2). By SRω1
(H ′), there is R′ ⊆ H ′ such that |R′| ⊆ ω1 ⊆ R′ and

X ′ ∩ Pω1
(R′) is stationary. Let R := R′ ∩H. Then, |R| = ω1 ⊆ R. Note also that

X ′ ∩ Pω1
(R′) = {x′ ∈ Pω1

(R′) | x′ ∩R ∈ X ∩ Pω1
(R)} .

Then, since X ′ ∩Pω1
(R′) is stationary, X ∩Pω1

(R) is stationary again by Fact 2.1
(2). Thus R witnesses SRω1

(H) for X. �

Next, we give our notation and basic facts on forcing.
Let P be a poset, and suppose G is a P-generic filter over V . For a P-name ȧ,

let ȧG denote the evaluation of ȧ by G. For a set M ⊆ V , we let M [G] be the set
{ȧG | ȧ ∈ V P ∩M}.

Let P be a poset and µ be a regular uncountable cardinal. We say that P has the
<µ-c.c. if P has no antichain of cardinality µ. P is said to be <µ-closed if every
descending sequence in P of length < µ has a lower bound in P. We say that P is
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<µ-directed closed if every downward directed subset of P of cardinality < µ has a
lower bound in P. P is said to be <µ-Baire if

⋂
D is dense in P for any family D

of dense open subsets of P with |D| < µ. Note that if P is <µ-Baire, then forcing
extensions by P do not add new sequences of ordinals of length < µ.

We will also use the approximation property introduced by Hamkins [8]. We say
that P has the <µ-approximation property if it satisfies the following:

For any P-generic filter G over V and any A ∈ V [G] with A ⊆ V ,
if A ∩B ∈ V for all B ∈ V with |B|V < µ, then A ∈ V .

We will use the following standard lemma. Note that Y may not be club in a
forcing extension of V by P.

Lemma 2.3. Suppose κ is a regular uncountable cardinal and κ ⊆ H. Let P be
a poset with the <κ-c.c. and Ż be a P-name such that 
P “ Ż is club in Pκ(H)”.
Then, in V , Y := {y ∈ Pκ(H) |
P “ y ∈ Ż”} is club in Pκ(H).

Proof. Clearly, Y is closed, that is,
⋃

ξ<µ xξ ∈ Y for any ⊆-increasing sequence
〈xξ | ξ < µ〉 in Y of length µ < κ. To show that Y is ⊆-cofinal, take an arbitrary
x ∈ Pκ(H). We find y ∈ Y with x ⊆ y.

By recursion on n < ω, take xn ∈ Pκ(H) and a P-name żn as follows. Let x0 := x.
Suppose that xn has been taken. First, take a P-name żn so that 
P “xn ⊆ żn ∈ Ż ”.
Then, by the <κ-c.c. of P, take xn+1 ∈ Pκ(H) so that 
P “ żn ⊆ xn+1 ”.

Let y :=
⋃

n∈ω xn. Clearly x ⊆ y. Also, P forces that 〈żn | n < ω〉 is a ⊆-
increasing sequence in Ż and that y =

⋃
n<ω żn. Then, it follows from the closure

of Ż that 
P “ y ∈ Ż ”. So y ∈ Y . �

Let µ be a regular cardinal and A be a set of ordinals. Then Add(µ,A) denotes
the poset of all partial functions p : µ × A → 2 such that |p| < µ. Also, Col(µ,A)

denotes the poset of all partial functions p : µ×A → sup(A) such that |p| < µ and
p(α, β) ∈ β for all 〈α, β〉 ∈ µ × A. Both Add(µ,A) and Col(µ,A) are ordered by
reverse inclusions. Thus, both of them are <µ-closed.

Recall that Add(µ, ν) has the <(2<µ)+-c.c. A forcing by Add(µ,A) adds generic
subsets of µ indexed by elements of A, and a forcing by Col(µ,A) adds a surjection
from µ to β for each β ∈ A. According to the custom, for a cardinal ν > µ, we
denote Col(µ, ν) as Col(µ,< ν). Recall that if ν is inaccessible, then Col(µ,< ν)

has the <ν-c.c., and ν = µ+ in its forcing extensions.
We will use the following fact by Mitchell [15]. In [15], it is proved in some

general settings. Here we give a direct proof.

Fact 2.4 (Mitchell [15]). Let µ be a regular cardinal and ρ be an ordinal. Then
Add(µ, ρ) has the <(2<µ)+-approximation property.
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Proof. We work in V . Let ν := 2<µ. For a contradiction, assume Add(µ, ρ) does
not have the <ν+-approximation property. Then, we can take p ∈ Add(µ, ρ) and
a Add(µ, ρ)-name Ȧ with the following properties.

(i) p 
Add(µ,ρ) “ Ȧ ⊆ V ∧ Ȧ /∈ V ”.
(ii) p 
Add(µ,ρ) “ Ȧ ∩B ∈ V for any B ∈ V with |B|V ≤ ν ”.

Let θ be a sufficiently large regular cardinal. Then we can take M ≺ 〈Hθ,∈〉
such that µ, ρ, p, Ȧ ∈ M , |M | = ν and <µM ⊆ M . By (ii) we can take p∗ ≤ p

and A∗ ⊆ M such that p∗ 
Add(µ,ρ) “ Ȧ ∩ M = A∗ ”. Let q∗ := p∗ ∩ M . Then
q∗ ∈ Add(µ, ρ) ∩M since <µM ⊆ M . Note also that q∗ ≤ p.

By (i) and the elementarity of M , in M , we can take a and q0, q1 ≤ q∗ such that
q0 
Add(µ,ρ) “ a /∈ Ȧ ” and q1 
Add(µ,ρ) “ a ∈ Ȧ ”. Note that both q0 and q1 are
compatible with p∗ since q0, q1 ∈ M and q0, q1 ≤ q∗ = p∗ ∩M . If a ∈ A∗, then this
contradicts that q0 and p∗ are compatible, and if a /∈ A∗, then this contradicts that
q1 and p∗ are compatible. �

3. Internally approachable sets

In this section, we briefly review basics on internally approachable sets.
For a limit ordinal ζ, a set M is called internally approachable (i.a. for short) of

length ζ if there is a ⊆-increasing sequence 〈Mξ | ξ < ζ〉 such that

•
⋃

ξ<ζ Mξ = M ,
• 〈Mξ | ξ < ζ ′〉 ∈ M for all ζ ′ < ζ.

A sequence 〈Mξ | ξ < ζ〉 as above is called an i.a. sequence to M .
Let M be a set. We say that M i.a. if M is i.a. of length ζ for some limit ordinal

ζ. M is said to be i.a. of regular length if M is i.a. of length µ for some regular
cardinal µ. For a regular cardinal µ, we say that M is i.a. of cofinality µ (> µ,
< µ, respectively) if M is i.a. of length ζ for some limit ordinal ζ of cofinality µ

(> µ, < µ, respectively).
Let IA denote the class of all i.a. sets. Let IAµ (IA>µ, IA<µ, respectively) be

the class of all sets which are i.a. of cofinality µ (> µ, < µ, respectively).
Note that if M is countable and M ≺ 〈Hλ,∈〉 for some regular uncountable

cardinal λ, then M is i.a. of length ω. (Take an enumeration 〈an | n < ω〉 of M ,
and let Mn := {am | m < n} for n < ω. Then 〈Mn | n < ω〉 is an i.a. sequence
to M .) Thus, for any regular uncountable cardinal λ, Pω1(Hλ) ∩ IA is club in
Pω1(Hλ), and so SRω1(Hλ) is equivalent to SRω1(Hλ)� IA. Thus SRω1 is equivalent
to SRω1

� IA by Lemma 2.2.
The following are basic facts on i.a. sets. The proofs of (1) and (2) are found

in [7, Lemma 28], and those of (3) and (4) are found in [3, Lemma 2.3] and [6,
Proposition 2.4], respectively.

Fact 3.1. Let µ, κ, λ and λ′ be regular cardinals with µ < κ ≤ λ < λ′.
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(1) Pκ(Hλ) ∩ IAµ is stationary in Pκ(Hλ).
(2) Every stationary X ⊆ Pκ(Hλ) ∩ IA remains stationary in any <κ-closed

forcing extension.
(3) Suppose M ∈ IAµ and M ≺ 〈Hλ,∈〉. Then M ∩ λ is ν-closed for every

regular cardinal ν < µ, and cf(M ∩ ν) = µ for any regular cardinal ν ∈ M

with ν ≥ µ and for ν = λ.
(4) For any X ⊆ Pκ(Hλ) ∩ IA, X is stationary in Pκ(Hλ) if and only if the

set {M ′ ∈ Pκ(Hλ′) ∩ IA | M ′ ∩Hλ ∈ X} is stationary in Pκ(Hλ′).

Using Fact 3.1, the same argument as Lemma 2.2 yields the following.

Lemma 3.2. Let µ and κ be regular cardinals with µ < κ, and suppose C is IA,
IAµ, IA<µ or IA>µ. Assume that λ and λ′ are regular cardinals with κ ≤ λ ≤ λ′

and that SRκ(Hλ′)�C holds. Then, SRκ(Hλ)�C holds.

Proof. Take an arbitrary stationary X ⊆ Pκ(Hλ) ∩ C. We find R ⊆ Hλ such that
|R| = κ ⊆ R and X ∩ Pκ(R) is stationary.

Let X ′ be the set of all M ′ ∈ Pκ(Hλ′) ∩ IA such that λ ∈ M ′ ≺ 〈Hλ′ ,∈〉 and
M ′ ∩Hλ ∈ X. Then X ′ is stationary in Pκ(Hλ) by Fact 3.1 (4).

We claim that X ′ ⊆ C. This is clear if C = IA. Suppose C is IA<µ, IAµ or
IA>µ. Take an arbitrary M ′ ∈ X ′. Let M := M ′ ∩ Hλ. Then M ∈ X ⊆ C.
Let ν be a regular cardinal with M ∈ IAν . Note that ν > µ, ν = µ, or ν < µ

if C = IA<µ, C = IAµ, or C = IA>µ, respectively. Note also that M ≺ 〈Hλ,∈〉.
So cf(M ′ ∩ λ) = cf(M ∩ λ) = ν by Fact 3.1 (3). Then, since M ′ ∈ IA and
λ ∈ M ′ ≺ 〈Hλ′ ,∈〉, we have that M ′ ∈ IAν again by Fact 3.1 (3). So M ′ ∈ C.

By SRκ(Hλ′) �C, there is R′ ⊆ Hλ′ such that |R′| = κ ⊆ R′ and X ′ ∩ Pκ(R
′)

is stationary. Let R := R′ ∩ Hλ. Clearly, |R| = κ ⊆ R. Note also that the set
Y ′ := {M ′ ∈ Pκ(R

′) | M ′ ∩ R ∈ X ∩ Pκ(R)} includes X ′ ∩ Pκ(R
′), and so Y ′ is

stationary in Pκ(R
′). Then, X ∩ Pκ(R) is stationary in Pκ(R) by Fact 2.1 (2).

Therefore R is as desired. �

The notion of i.a. is closely related to Shelah’s approachability ideal I[κ]. For a
regular uncountable cardinal κ, let I[κ] be the set of all S ⊆ κ with the following
property.

There are a sequence 〈bα | α < κ〉 of bounded subsets of κ and a
club C ⊆ κ such that for any limit ordinal γ ∈ S ∩C there is b ⊆ γ

of order-type cf(γ) with b ∩ β ∈ {bα | α < γ} for all β < γ.

We will use the following folklore.

Lemma 3.3. Let κ and λ be regular cardinals with ω1 ≤ κ ≤ λ, and suppose
κ ∈ I[κ]. Then, there is a club Z ⊆ Pκ(Hλ) such that every M ∈ Z ∩ IA is i.a. of
regular length.
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Proof. Take a pair ~b = 〈bα | α < κ〉 and C ⊆ κ witnessing that κ ∈ I[κ]. Let
M := 〈Hλ,∈, κ,~b, C〉, and let Z be the set of all M ∈ Pκ(Hλ) such that M ≺ M
and M ∩κ ∈ κ. Then, Z is club in Pκ(Hλ). We claim that Z witnesses the lemma.

Suppose M ∈ Z ∩ IA. Take an i.a. sequence 〈Mξ | ξ < ζ〉 to M . Let µ := cf(ζ).
We show that M is i.a. of length µ. Let γ := M ∩ κ and γξ := sup(Mξ ∩ κ) for
each ξ < ζ. Then, 〈γξ | ξ < ζ〉 is an increasing cofinal sequence in γ, and so
cf(γ) = cf(ζ) = µ. Note also that γ ∈ C since M ≺ M.

Since ~b and C witnesses that κ ∈ I[κ], we can take a cofinal b ⊆ γ of order-type µ

all of whose proper initial segments are in {bα | α < γ}. Note that {bα | α < γ} ⊆ M

since γ ⊆ M ≺ M. So all proper initial segments of b are in M . Let 〈βη | η < µ〉
be the increasing enumeration of b, and for each η < µ let ξη be the least ξ < ζ

with βη < γξ. Then, 〈ξη | η < µ〉 is increasing and cofinal in ζ. In particular,
〈Mξη | η < µ〉 is ⊆-increasing, and

⋃
η<µ Mξη = M . Moreover, all proper initial

segments of 〈Mξη | η < µ〉 are in M , since they are definable from proper initial
segments of b and 〈Mξ | ξ < ζ〉, which are in M . So 〈Mξη | η < µ〉 is an i.a. sequence
to M , and M is i.a. of length µ. �

Suppose κ is a regular uncountable cardinal. The assertion that κ ∈ I[κ] is known
to be easily forced by the following poset Iκ, which adds a witness of κ ∈ I[κ] by
initial segments. Let Iκ be the poset of all 〈s, c〉 such that

(i) c is a closed bounded subset of κ.
(ii) s is a sequence 〈bα | α < max(c)〉 of bounded subsets of κ.
(iii) For any limit ordinal γ ∈ c, there is b ⊆ γ of order-type cf(γ) with b ∩ β ∈

{bα | α < γ} for all β < γ.

〈s, c〉 ≤ 〈t, d〉 in Iκ if s and c are end-extensions of t and d, respectively.

Lemma 3.4. Let κ be a regular uncountable cardinal. Then Iκ is <κ-Baire.

Proof. Suppose 〈Dξ | ξ < µ〉 is a sequence of dense open subsets of Iκ, where µ is a
cardinal < κ. Take an arbitrary p ∈ Iκ. We must find p∗ ≤ p with p∗ ∈

⋂
ξ<µ Dξ.

For each limit ordinal ζ ≤ µ, take a cofinal eζ ⊆ ζ of order-type cf(ζ). By
recursion on ξ ≤ µ, we will take pξ = 〈cξ, sξ〉 ∈ Iκ so that 〈pξ | ξ ≤ µ〉 is descending
and pξ+1 ∈ Dξ. When pξ has been taken, we let βξ := max(cξ) and let sξ = 〈bα |
α ≤ βξ〉. First of all, let p0 := p.

Suppose ξ < µ and pξ has been taken. We take pξ+1. First, take p′ = 〈c′, s′〉 ≤ pξ

with p′ ∈ Dξ. Let β′ := max(c′), βξ+1 := β′ + µ+1 and cξ+1 := c′ ∪ {βξ+1}. Next,
take a sequence 〈bα | β′ ≤ α < βξ+1〉 of bounded subsets of κ such that

(∗) {βη | η ∈ eζ ∩ (ξ + 1)} ∈ {bα | β′ ≤ α < βξ+1} for all limit ζ ≤ µ.

Let sξ+1 := s′ ∪ 〈bα | β′ ≤ α < βξ+1〉. Finally, let pξ+1 := 〈cξ+1, sξ+1〉. Note that
pξ+1 ∈ Iκ since p′ ∈ Iκ, and βξ+1 is a successor ordinal. Note also that pξ+1 ≤ pξ

and pξ+1 ∈ Dξ.
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Next, suppose ξ is a limit ordinal ≤ µ and 〈pη | η < ξ〉 has been taken. Let
βξ := supη<ξ βη, cξ := (

⋃
η<ξ cη) ∪ {βξ}, sξ :=

⋃
η<ξ sη and pξ := 〈cξ, sξ〉. To see

that pξ ∈ Iκ, it suffices to check the property (iii) of conditions of Iκ for γ = βξ.
But, by (∗) at successor steps, b = {βη | η ∈ eξ} witnesses this. Note also that
pξ ≤ pη for all η < ξ.

Now, we have defined 〈pξ | ξ ≤ µ〉. Clearly, p∗ := pµ is as desired. �

By the previous lemma, Iκ preserves all cofinalities ≤ κ. Moreover, it is easy to
check that for any γ < κ the set {〈c, s〉 ∈ Iκ | γ ≤ max(c)} is dense. Then, for an
Iκ-generic filter G over V ,

⋃
{s | ∃c, 〈c, s〉 ∈ G} and

⋃
{c | ∃s, 〈c, s〉 ∈ G} witness

that κ ∈ I[κ]. So we have the following.

Lemma 3.5. Let κ be a regular uncountable cardinal. Suppose G is an Iκ-generic
filter over V . Then κ ∈ I[κ] in V [G].

Next, we turn our attention to scales in the PCF theory. It is well-known that
i.a. sets have nice properties in connection with scales. See [1], [3] and [17] for
example. Below, we briefly review a very basic one (Lemma 3.6). In this paper, we
only use scales at singular cardinals of cofinality ω.

Let ν be a singular cardinal of cofinality ω and I be a set of regular cardinals
with sup(I) = ν. Then, ΠI is the set of all functions f : I → On such that f(ι) < ι

for all ι ∈ I. For f, g ∈ ΠI, we write f <∗ g (f ≤∗ g, f =∗ g, respectively) if there
is δ < sup I such that f(ι) < g(ι) (f(ι) ≤ g(ι), f(ι) = g(ι), respectively) for all
ι ∈ I \ δ. A scale in ΠI is a <∗-increasing <∗-cofinal sequence of elements of ΠI of
length ν+.

To state the nice property of i.a. sets, we introduce the notion of µ-continuity of
scales. Let ν and I be as above.

For F ⊆ ΠI with |F| < ν, let sup(F) be g ∈ ΠI such that g(ι) = supf∈F f(ι)

for ι > |F| and g(ι) = 0 for all ι ≤ |F|. Suppose γ is a limit ordinal < ν+ of
uncountable cofinality. For a sequence 〈δα | α < γ〉 of ordinals, let

csupα<γ δα := min{supα∈c δα | c is a club subset of γ of order-type cf(γ)} .

For a sequence 〈fα | α < γ〉 in ΠI, let csupα<γ fα be g ∈ ΠI such that g(ι) =

csupα<γ fα(ι) for ι > cf(γ) and g(ι) = 0 for ι ≤ cf(γ).
Note that if 〈fα | α < γ〉 is <∗-increasing, then fβ <∗ csupα<γ fα for all β < γ:

Assume not. Let f := csupα<γ fα, and take β < γ with fβ 6<∗ f . Then we can
take a countable unbounded I ′ ⊆ I such that cf(γ) < min(I ′) and fβ(ι) ≥ f(ι) for
all ι ∈ I ′. For each ι ∈ I ′, take a club cι ⊆ γ with f(ι) = supα∈cι fα(ι). Then
c :=

⋂
ι∈I′ cι is club in γ. Take α ∈ c with β < α. Since fβ <∗ fα, we can take

ι ∈ I ′ with fβ(ι) < fα(ι). But fα(ι) ≤ f(ι) since α ∈ c ⊆ cι. So fβ(ι) < f(ι). This
contradicts that ι ∈ I ′.

For a regular uncountable cardinal µ < ν, a scale 〈fα | α < ν+〉 in ΠI is said to
be µ-continuous if fγ = csupα<γ fα for all γ ∈ ν+ ∩ Cf(µ).
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We also use characteristic functions of sets. For a set A with |A| < ν, the
characteristic function of A on I, which we denote as chIA, is the function on I

defined by chIA(ι) := sup(A ∩ ι) for ι > |A| and chIA(ι) := 0 for ι ≤ |A|. Note that
chIA ∈ ΠI.

I.a. sets have the following nice property in connection with scales. We give its
proof for the convenience of the readers.

Lemma 3.6 (Shelah [17]). Let ν be a singular cardinal of cofinality ω and µ be a
regular uncountable cardinal < ν. Suppose I is a countable set of regular cardinals
with sup I = ν and ~f = 〈fα | α < ν+〉 is a µ-continuous scale in ΠI. Suppose also
that M is an i.a. set of length µ, |M | < ν and ~f ∈ M ≺ 〈Hλ,∈〉 for some regular
cardinal λ > ν+. Then chIM =∗ fsup(M∩ν+).

Proof. We may assume min I > µ. Let γ := sup(M ∩ ν+). Note that cf(γ) = µ.
For each ι ∈ I, let cι be a club subset of γ of order-type µ such that fγ(ι) =

supα∈cι fα(ι). Let c := (
⋂

ι∈I cι)∩M . Then c is club in γ, and fγ = supα∈c fα. Let
〈Mξ | ξ < µ〉 be an i.a. sequence to M .

First, we prove fγ ≤∗ chIM . For each α ∈ c, ran(fα) ⊆ M since α, ~f ∈ M , and
dom(fα) = I is countable. Then, it follows that fγ = supα∈c fα ≤∗ chIM .

Next, we prove chIM ≤∗ fγ . For each ξ < µ, let gξ := chIMξ
. Note that gξ ∈ M .

Then, for each ξ < µ, there is α ∈ ν+ ∩ M with gξ <∗ fα since ~f ∈ M , and ~f is
<∗-cofinal in ΠI. So gξ <∗ fγ for all ξ < µ. For each ξ < µ, let ιξ ∈ I be such
that gξ(ι) < fγ(ι) for all ι ∈ I with ι ≥ ιξ. Then, we can take ι∗ ∈ I such that
b := {ξ < µ | ιξ = ι∗} is unbounded in µ, since µ is regular uncountable, and I

is countable. Then, supξ∈b gξ ≤∗ fγ . On the other hand, chIM = supξ∈b gξ since
M =

⋃
ξ∈b Mξ. So chIM ≤∗ fγ . �

We will also use the following.

Lemma 3.7. Let ν be a singular cardinal of cofinality ω, I be a set of regular
cardinals with sup(I) = ν and µ be a regular uncountable cardinal < ν.

(1) If 2ν = ν+, then there is a µ-continuous scale in ΠI.
(2) Suppose ~f = 〈fα | α < ν+〉 is a µ-continuous scale in ΠI. Then ~f is a

µ-continuous scale in ΠI in any <µ-closed <µ+-c.c. forcing extension.

Proof. (1) Suppose 2ν = ν+. Then |ΠI| = ν+. Let 〈gα | α < ν+〉 be an enumeration
of ΠI. By induction on α < ν+ take fα ∈ ΠI as follows: If α is a successor ordinal,
then let fα ∈ ΠI be such that fα−1, gα−1 <∗ fα. Suppose α is a limit ordinal. If
cf(α) = µ, then let fα := csupβ<α fβ . Otherwise, take an unbounded b ⊆ α of
order-type cf(α) < ν, and let fα := sup{fβ | β ∈ b}. Then 〈fα | α < ν+〉 is a
µ-continuous scale in ΠI.
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(2) Let V ′ be a <µ-closed <µ+-c.c. forcing extension of V . Note that cofinalities
and cardinalities are absolute between V and V ′. We show that ~f is a µ-continuous
scale in ΠI in V ′. We work in V ′.

First, we check that ~f is a scale. It suffices to show that ~f is <∗-cofinal in ΠI.
Take an arbitrary g ∈ ΠI. We find α < ν+ with g <∗ fα. Since V ′ is a < µ+-
c.c. forcing extension, there is a function H ∈ V on I such that g(ι) ∈ H(ι) and
|H(ι)| ≤ µ for all ι ∈ I. In V , define h ∈ ΠI as h(ι) := sup(H(ι)) for ι > µ and
h(ι) := 0 for ι ≤ µ. Then g ≤∗ h. Since ~f is <∗-cofinal in ΠI in V , there is α < ν+

with h <∗ fα. Then g <∗ fα.
Next, we show that ~f is µ-continous in V ′. For this, it suffices to prove that if

γ ∈ Cf(µ), and 〈δα | α < γ〉 is a sequence of ordinals which belongs to V , then
csupα<γ δα is absolute between V and V ′. Let γ and 〈δα | α < γ〉 be as above, and
let δ and δ′ be csupα<γ δα in V and V ′, respectively. Clearly, δ′ ≤ δ. On the other
hand, in V ′, there is a club c′ ⊆ γ with supα∈c′ δα = δ′. Then, using the fact that
γ ∈ Cf(µ) and V ′ is a <µ-closed forcing extension of V , in V we can easily take a
club c ⊆ γ of order-type µ with supα∈c δα ≤ δ′. So δ ≤ δ′. �

4. Generic supercompactness and SR∗

As we mentioned at the introduction, if a supercompact cardinal is Lévy col-
lapsed to κ+, then κ+ is generically supercompact with respect to <κ-closed forc-
ings. Moreover, this generic supercompactness of κ+ implies SR∗

κ � IA. In this
section, we review this and study consequences of generic supercompactness on
cardinal arithmetic. For a systematic and detailed study of generic large cardinals,
see Foreman [5].

First, we recall the notion of generic supercompactness. For classes M,N , a
class function j : M → N and ordinals τ, ν with τ ≤ ν, we say that j : M → N a
(τ, ν)-supercompact embedding if

(i) M and N are transitive models of ZFC.
(ii) j is an elementary embedding with crit(j) = τ , where crit(j) denotes the

critical point of j.
(iii) j(τ) > ν and j[ν] ∈ N .

Recall that τ is supercompact if there is a (τ, ν)-supercompact embedding j : V →
M for any ν ≥ τ .

For a regular uncountable cardinals κ and τ with κ < τ , we say that τ is
generically supercompact with respect to < κ-closed forcings if for any cardinal
ν ≥ τ , in some < κ-closed forcing extension of V , there is a (τ, ν)-supercompact
embedding with its domain V .

The following proposition is standard. See Cummings [2, §10] for example. We
will later prove more general fact in Proposition 4.3.
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Proposition 4.1. Let κ be a regular cardinal and τ be a supercompact cardinal
> κ. Suppose G is a Col(κ,<τ)-generic filter over V . Then, in V [G], τ = κ+ and
τ is generically supercompact with respect to <κ-closed forcing.

As we mentioned at the introduction, SR∗
κ � IA follows from the generic super-

compactness.

Proposition 4.2. Assume κ+ is a generic supercompact cardinal with respect to
<κ-closed forcings. Then SR∗

κ � IA holds.

Proof. In V , let λ be a regular cardinal > κ and X be a stationary subset of
Pκ(HV

λ ) ∩ IA. We show that in V there is R ⊆ HV
λ such that |R| = κ ⊆ R, R is

i.a. of length κ and X ∩ Pκ(R) is stationary.
Let ν := |HV

λ | in V . Then, in some <κ-closed forcing extension V ′ of V , we can
take a ((κ+)V , ν)-supercompact embedding j : V → M . Note that j(κ) = κ. By
the elementarity of j, it suffices to show that in M there is R∗ ⊆ j(HV

λ ) such that
|R∗| = κ ⊆ R∗, R∗ is i.a. of length κ and j(X) ∩ Pκ(R

∗) is stationary.
Let R∗ := j[HV

λ ]. Then it is easy to see that R∗ ∈ M using the fact that
|HV

λ | = ν in V and j[ν] ∈ M . We show that R∗ is as desired. Clearly κ ⊆ R∗.
Moreover, |R∗| ≤ κ in M since |R∗|M ≤ ν < j((κ+)V ) = (κ+)M .

Note that X remains stationary in Pκ(HV
λ ) in V ′ by Fact 3.1 (2). Then, {j[x] |

x ∈ X} is stationary in Pκ(R
∗) in V ′. But j[x] = j(x) for all x ∈ X since

|x|V < κ < crit(j). So {j[x] | x ∈ X} = j[X] ⊆ j(X)∩Pκ(R
∗). Thus j(X)∩Pκ(R

∗)

is stationary in V ′. Then so is in M since M ⊆ V ′.
It remains to show that R∗ is i.a. of length κ in M . Recall that |HV

λ | = κ in
M . Take a bijection f : κ → HV

λ in M , and for each ξ < κ let N ′
ξ := f [ξ]. Note

that if ζ < κ, then f � ζ ∈ V since V ′ is a <κ-closed forcing extension of V , and
so 〈N ′

ξ | ξ < ζ〉 ∈ HV
λ . For each ξ < κ, let Nξ := j[N ′

ξ] = j(Nξ) = j(f)[ξ]. Note
that 〈Nξ | ξ < κ〉 ∈ M since j(f) ∈ M . Also,

⋃
ξ<κ Nξ = j[HV

λ ] = R∗. Moreover,
for all ζ < κ, 〈Nξ | ξ < ζ〉 = j(〈N ′

ξ | ξ < ζ〉) ∈ j[HV
λ ] = R∗. So 〈Nξ | ξ < κ〉 is an

i.a. sequence to R∗ in M . �

In the rest of this section, we study consequences of generic supercompactness
on cardinal arithemetic. The next proposition shows that the generic supercom-
pactness of κ+ with respect to <κ-closed forcings does not give any bound on 2µ

for a regular µ ≥ κ. In particular, by Proposition 4.2, SR∗
κ � IA does not give any

bound on 2µ for a regular µ ≥ κ.

Proposition 4.3. Let κ be a regular cardinal and τ be a supercompact cardinal
> κ.

(1) For any ρ ∈ On, Col(κ,<τ) ∗Add(κ, ρ), forces that τ is generically super-
compact with respect to <κ-closed forcings.
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(2) For any Col(κ,<τ)-name Q̇ for a <τ -directed closed poset, Col(κ,<τ) ∗ Q̇
forces that τ is generically supercompact with respect to <κ-closed forcings.
In particular, for any regular µ ≥ τ and any ρ ∈ On, Col(κ,<τ)∗Add(µ, ρ)

forces that τ is generically supercompact with respect to <κ-closed forcings.

Proof. In the proof below, we will deal with several transitive models, but <κOn

will be absolute among them. In particular, Col(κ, ∗) and Add(κ, ∗) will be absolute
among them.

(1) Suppose G × H is a Col(κ,< τ) × Add(κ, ρ)-generic filter over V . Take an
arbitrary ordinnal ν ≥ τ . We will find a <κ-closed forcing extension of V [G][H]

in which there is a (τ, ν)-supercompact embedding with its domain V [G][H]. We
may assume ν ≥ |Add(κ, ρ)| in V [G].

In V , take a (τ, ν)-supercompact embedding j : V → M . Then,

j(Col(κ,<τ)×Add(κ, ρ)) = Col(κ,<j(τ))×Add(κ, j(ρ))

∼= Col(κ,<τ)× Col(κ, j(τ) \ τ)×Add(κ, j[ρ])×Add(κ, j(ρ) \ j[ρ])

Suppose G′ × H ′ is a Col(κ, j(τ) \ τ) × Add(κ, j(ρ) \ j[ρ])-generic filter over
V [G][H]. Then V [G][H][G′][H ′] is a <κ-closed forcing extension of V [G][H]. We
show that in V [G][H][G′][H ′], j : V → M can be extended to an elementary
embedding from V [G][H].

First, note that j � Add(κ, ρ) : Add(κ, ρ) → Add(κ, j[ρ]) is isomorphic and
j �Add(κ, ρ) ∈ M . Then, G × j[H] is Col(κ,< τ) × Add(κ, j[ρ])-generic over M ,
and G′ ×H ′ is Col(κ, j(τ) \ τ)×Add(κ, j(ρ) \ j[ρ])-generic over M [G][j[H]].

Let Ḡ be the Col(κ,<j(τ))-generic filter corresponding to G×G′ and H̄ be the
Add(κ, j(ρ))-generic filter corresponding to j[H] ×H ′. Then, note that Ḡ × H̄ is
j(Col(κ,< τ) × Add(κ, ρ))-generic over M , and j[G × H] ⊆ Ḡ × H̄. So, by the
standard argument, j can be extended to an elementary embedding from V [G][H]

to M [Ḡ][H̄].

(2) Suppose G is a Col(κ,< τ)-generic filter over V . Let Q := Q̇G, and suppose
H is a Q-generic filter over V [G]. Take an arbitrary cardinal ν ≥ τ . We will find
a <κ-closed forcing extension of V [G][H] in which there is a (τ, ν)- supercompact
embedding with its domain V [G][H]. We may assume ν ≥ |Q| in V [G][H].

In V , take a (τ, ν)-supercompact embedding j : V → M . Then, in M ,

j(Col(κ,<τ) ∗ Q̇) = Col(κ,<j(τ)) ∗ j(Q̇)

∼= (Col(κ,< τ)× Col(κ, j(τ) \ τ)) ∗ j(Q̇) .

Let I be a Col(κ, j(τ) \ τ)-generic filter over V [G][H]. Note that in V [G], Q ×
Col(κ, j(τ)\ τ) is forcing equivalent to Col(κ, j(τ)\ τ). Let G′ be a Col(κ, j(τ)\ τ)-
generic filter over V [G] which corresponds to H × I. Moreover, let Ḡ be a Col(κ,<
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j(τ))-generic filter naturally obtained from G×G′. Note that H ∈ M [Ḡ] and V [Ḡ]

is a <κ-closed forcing extension of V [G][H].
SInce j[G] ⊆ Ḡ, j : V → M can be extended to an elementary embedding

j : V [G] → M [Ḡ] by the standard argument. Here note that j(Q) is < j(κ)-
directed closed in M [Ḡ]. Note also that j[H] ∈ M [Ḡ]. Moreover, in M [Ḡ], j[H]

is a directed subset of j(Q) of size ≤ ν < j(κ). So we can take a lower bound q∗

of j[H]. Let H̄ be a j(Q)-generic filer over V [Ḡ] containing q∗. Then j[H] ⊆ H̄.
So, in V [Ḡ][H̄], j : V [G] → M [Ḡ] can be extended to an elementary embedding
j : V [G][H] → M [Ḡ][H̄].

Note also that j(Q) is < κ-closed in V [Ḡ], since so is in M [Ḡ] and <κOn is
absolute among V [Ḡ], V , M and M [Ḡ]. Hence V [Ḡ][H̄] is a < κ-closed forcing
extension of V [G][H]. �

The following proposition is essenttially proved in Matsubara [13].

Proposition 4.4. Let κ be a regular uncountable cardinal, and suppose κ+ is
generically supercompact with respect to < κ-closed forcings. Then λ<κ = λ for
every regular cardinal λ ≥ κ. In particular, 2<κ = κ, and SCH holds above κ.

Proof. The latter statement clearly follows from the former, For the former, it
suffices to prove the following.

(1) 2<κ = κ.
(2) For any regular λ ≥ κ, there is a ⊆-cofinal subset of Pκ(λ) of size λ.

Let τ := κ+.

(1) For a contradiction, assume ν := 2<κ > κ. Then we can take a bijection
f : ν → <κ2.

By the generic supercompactness of τ , in some <κ-closed forcing extension V ′

of V , we can define an elementary embedding j from V to a transitive M with
critical point τ . Then j(f) is a bijection from j(ν) to (<κ2)M . Let A := j(f)(τ).
Then A ∈ (<κ2)M ⊆ (<κ2)V

′
= (<κ2)V since V ′ is a <κ-closed forcing extension

of V . Then we can take α < ν with f(α) = A since f is surjective. Then,
j(f)(j(α)) = j(f(α)) = j(A) = A = j(f)(τ). But j(α) 6= τ since τ is the critical
point of j. This contradicts that j(f) is injective.

(2) Suppose λ is a regular cardinal ≥ κ. Take a partition 〈Sα | α < λ〉 of λ∩Cf(ω)

into stationary sets. Let X be the set of all x ∈ Pκ(λ) such that cf(x) > ω and

x = {α < λ | Sα ∩ sup(x) is stationary in sup(x)} .

Note that the mapping x 7→ sup(x) is an injection from X to λ. So |X| ≤ λ. We
show that X is ⊆-cofinal in Pκ(λ). Take an arbitrary y ∈ Pκ(λ). We show that
there is x ∈ X with x ⊇ y.

By the generic supercompactness of τ , suppose V ′ is a <κ-closed forcing exten-
sion of V , and j : V → M is a (τ, λ)-supercompact embedding definable in V ′. By
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the elementarity of j, it suffices to show that in M there is x ∈ j(X) with x ⊇ j(y).
Below, we work in V ′.

Note that x∗ := j[λ] ∈ M and j[λ] ∈ Pj(κ)(j(λ)) in M . Note also that j(y) =

j[y] ⊆ x∗ since y ∈ Pκ(λ) in V , and κ < crit(j). So it suffices to show that
x∗ ∈ j(X). Let j(〈Sα | α < λ〉) = 〈S′

α′ | α′ < j(λ)〉. We must show that for
α′ < j(λ), α′ ∈ j[λ] if and only if S′

α′ ∩ sup(j[λ]) is stationary in M .
First, suppose α′ ∈ j[λ]. Take α < λ with j(α) = α′. Note that Sα remains

stationary in λ in V ′ since V ′ is a <κ-closed forcing extension of V . Note also that
j �Cf(ω)V is continuous, that is, j(β) = sup{j(γ) | γ < β} for any β ∈ Cf(ω)V . So,
j[Sα] is stationary in sup(j[λ]). But

j[Sα] ⊆ j(Sα) ∩ sup(j[λ]) = S′
α′ ∩ sup(j[λ]) .

Thus S′
α′ ∩ sup(j[λ]) is stationary in V ′, and so is in M since M ⊆ V ′.

Next, suppose α′ ∈ j(λ) \ j[λ]. Let T ′ :=
⋃

β′∈j[λ] S
′
β′ . Then S′

α′ ∩ T ′ = ∅ since
〈S′

γ′ | γ′ < j(λ)〉 is pairwise disjoint. Let C ′ := j[λ ∩ Cf(ω)V ] ∈ M . Then C ′ ⊆ T ′

since λ ∩Cf(ω)V =
⋃

α<λ Sα. So S′
α′ ∩C ′ = ∅. Note that C ′ is ω-club in sup(j[λ])

in V ′ since j �Cf(ω)V is continuous, and (ωOn)V
′
= (ωOn)V . Then so is in M since

M ⊆ V ′. Since S′
α′ ⊆ Cf(ω)M , it follows that S′

α′ ∩ sup(j[λ]) is non-stationary. �

5. SRκ � IAω and λω

In this section, we prove the following:

Theorem 5.1. Assume κ is a regular uncountable cardinal and SRκ � IAω holds.
Then λω = λ for all regular cardinal λ > κ.

Theorem 5.1 can be proved by a straightforward generalization of the proof of
the fact that SRω1

implies λω = λ for all regular cardinal λ > ω1. Here we give a
proof for the completeness of this paper. We will prove the following proposition.

Proposition 5.2. Assume κ is a regular uncountable cardinal and SRκ � IAω holds.
Then the following hold.

(1) (κ+)ω = κ+.
(2) For any singular cardinal ν of cofinality ω, if µω < ν for all µ < ν, then

νω = ν+.

Using this proposition, Theorem 5.1 can be easily proved by induction on λ.
Below, we prove Proposition 5.2. Our proofs of (1) and (2) are based on Veličović
[21] and Sakai [16], respectively.

We will use a game, which is a combination of games introduced in Shelah-Shioya
[19] and Veličković [20]. Suppose κ is a regular uncountable cardinal, δ is an ordinal
< κ, and M is a countable expansion of a structure 〈Hλ,∈,∆〉, where λ is a regular
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cardinal > κ and ∆ is a well-ordering of Hλ. Then let a(κ,M, δ) be the following
two players game of length ω:

I α0, β0 α1, β1 α2, β2 · · · αn, βn · · ·
II γ0 γ1 γ2 · · · γn · · ·

At the n-th stage, first I chooses αn, βn with αn < βn < λ, and then II chooses
γn with βn < γn < λ. If n ≥ 1, then I must choose αn > γn. After ω stages, let
M := SkM(δ ∪ {αn | n < ω}). I wins if M ∩ λ ⊆

⋃
n<ω βn \ αn and M ∩ κ = δ.

Note that I wins if and only if Mn ∩ γn ⊆
⋃

m≤n βm \ αm and Mn ∩ κ = δ for
all n < ω, where Mn = SkM(δ ∪{αm | m ≤ n}). Thus, a(κ,M, δ) is a closed game
for I, and so it is determined. The following lemma is a key.

Lemma 5.3. Let κ be a regular uncountable cardinal. Suppose λ is a regular
cardinal > κ, ∆ is a well-ordering of Hλ and M is a countable expansion of
〈Hλ,∈,∆〉. Then, there are club many δ < κ such that I has a winning strategy for
a(κ,M, δ).

Proof. Let C be the set of all δ < κ such that I has a winning strategy for a(κ,M, δ).
For a contradiction, assume that C does not contain a club subset of κ, that is,
κ \ C is stationary.

For each δ ∈ κ \ C, we can take a winning strategy σδ of II for a(κ,M, δ),
since a(κ,M, δ) is determined. Take a sufficiently large regular cardinal θ, and let
N := 〈Hθ,∈,M, 〈σδ | δ ∈ κ\C〉〉. Then, we can take a ⊆-increasing sequence 〈Nn |
n < ω〉 of elementary submodels of N such that Nn ∈ Nn+1 and Nn∩λ ∈ λ∩Cf(κ)

for all n < ω. Note that κ ⊆
⋃

n∈ω Nn ≺ N . Then, since κ \ C is stationary, we
can take N ≺ N of size < κ such that

• {Nn | n ∈ ω} ⊆ N ⊆
⋃

n∈ω Nn

• δ∗ := N ∩ κ ∈ κ \ C.
We will find a play 〈αn, βn, γn | n < ω〉 of a(κ,M, δ∗) in which II has moved

according to σδ∗ , but I wins. This will contradict that σδ∗ is a winning strategy of
II. For n ∈ ω, define αn, βn and γn as follows:

• α0 := 0, and αn := Nn−1 ∩ λ ∈ λ ∩ Cf(κ) for n ≥ 1.
• βn := sup(N ∩ αn+1).
• γn := σδ∗(〈αm, βm | m ≤ n〉).

First, we check that 〈αn, βn, γn | n < ω〉 is a legal play of a(κ,M, δ∗) in which
II has moved according to σδ∗ . For this, it is enough to check that αn < βn <

γn < αn+1 for all n < ω. First, αn < βn since Nn−1 ∈ N . Next, βn < γn

since σδ∗ is a strategy for II. To see that γn < αn+1, note that βn < αn+1 since
|N | < κ = cf(αn+1). So 〈αm, βm | m ≤ n〉 ∈ Nn. Note also that σδ∗ ∈ Nn since
κ ⊆ Nn ≺ N . Thus γn < Nn ∩ λ = αn+1.

Next, we check that I wins with the play 〈αn, βn, γn | n < ω〉. For this let M be
SkM(δ∗∪{αn | n < ω}). Then M ⊆ N∩Hλ since δ∗∪{αn | n < ω} ⊆ N∩Hλ ≺ M.
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So M ∩ κ = δ∗ since N ∩ κ = δ∗ ⊆ M . Note also that N ∩ λ ⊆
⋃

n<ω βn \ αn

by the construction of 〈αn, βn | n < ω〉 and the fact that N ⊆
⋃

n∈ω Nn. So
M ∩ λ ⊆

⋃
n<ω βn \ αn. Hence I wins with 〈αn, βn, γn | n < ω〉. �

We also note that if cf(δ) = ω, then the resulting model M in a(κ,M, δ) is i.a. of
length ω.

Lemma 5.4. Let κ be a regular uncountable cardinal. Suppose λ is a regular
cardinal > κ, ∆ is a well-ordering of Hλ and M is a countable expansion of
〈Hλ,∈,∆〉. Then, for any δ ∈ κ ∩ Cf(ω) and any {αn | n < ω} ⊆ λ, it holds that
SkM(δ ∪ {αn | n < ω}) is i.a. of length ω.

Proof. Take δ ∈ κ ∩ Cf(ω) and {αn | n < ω} ⊆ λ arbitrarily. We prove that
M := SkM(δ ∪ {αn | n < ω}) is i.a. of length ω.

Take an increasing sequence 〈δn | n < ω〉 converging to δ and an enumeration
〈ϕn(u, v1, . . . , vkn

) | n < ω〉 of all formulas of the language of M in which u is a
free variable. For each n < ω, let hn : knHλ → Hλ be the Skolem function of ϕn

in M, that is, hn(b1, . . . , bkn
) is the ∆-least a with M |= ϕn(a, b1, . . . , bkn

) if such
a exists, and hn(b1, . . . , bkn) is undefined otherwise. Note the following:

(i) Each hn is definable over M.
(ii) M =

⋃
n<ω hn

[
kn(δ ∪ {αl | l < ω})

]
.

For each n < ω, let

Mn :=
⋃

m≤n

hm

[
km(δn ∪ {αl | l < n})

]
.

Clearly, 〈Mn | n < ω〉 is ⊆-increasing. Moreover
⋃

n<ω Mn = M by (ii). Note
also that each Mn belongs to M since M ≺ M, and Mn is definable in M from
parameters δn, α0, . . . , αn−1 ∈ M . Hence 〈Mn | n < ω〉 witnesses that M is i.a. of
length ω. �

By Lemma 5.3 and 5.4, we obtain the next lemma.

Lemma 5.5. Suppose κ and λ are regular uncountable cardinals with κ < λ, and
Z is a club subset of Pκ(Hλ). Then, there are a club C ⊆ λ and δ ∈ κ ∩ Cf(ω)

such that for any strictly increasing sequence 〈γn | n < ω〉 of elements of C there
is M ∈ Z ∩ IAω with the following properties.

(i) M ∩ κ = δ.
(ii) {γ ∈ C | M ∩ (sucC(γ) \ γ) 6= ∅} = {γn | n < ω}.

In particular, |{M ∩ λ | M ∈ Z ∩ IAω}| ≥ λω.

Proof. First note that the latter statement follows from the former, since there are
λω many strictly increasing sequences 〈γn | n < ω〉 of elements of C. Below, we
prove the former statement.
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First, we define C and δ. Take a well-ordering ∆ of Hλ and a countable expansion
M of 〈Hλ,∈,∆〉 such that for any M ∈ Pκ(Hλ), if M ≺ M and M ∩ κ ∈ κ, then
M ∈ Z. By Lemma 5.3, we can take δ ∈ κ ∩ Cf(ω) such that I has a winning
strategy σ for a(κ,M, δ). Let C be the set of all γ < λ which is closed under σ,
that is, for any s ∈ <ωγ, if 〈α, β〉 = σ(s), then α, β < γ. Note that C is club in λ.

To see that C and δ are as desired, suppose 〈γn | n < ω〉 is a strictly increasing
sequence of elements of C. Then, let 〈αn, βn〉 := σ(〈γm | m < n〉) for each n < ω,
and let M := SkM(δ ∪ {αn | n < ω}). We check that M belongs to Z ∩ IAω and
satisfies (i),(ii).

First, since each γ ∈ C is closed under σ, we have the following.

(iii) α0 < β0 < min(C) ≤ γ0, and γn < αn+1 < βn+1 < sucC(γn) ≤ γn+1 for all
n < ω,

In particular, 〈αn, βn, γn | n < ω〉 is a play of a(κ,M, δ) in which I has moved
according to a winning strategy σ. So M satisfies (i) and the following.

(iv) M ∩ λ ⊆
⋃

n<ω βn \ αn.

Then, M ≺ M, and M ∩ κ ∈ κ by (i). So M ∈ Z by the choice of M. Moreover,
M ∈ IAω by Lemma 5.4. Finally, (ii) follows from (iii) and (iv). �

Now, we can easily prove Proposition 5.2 (1).

Proof of Proposition 5.2 (1). Assume SRκ � IAω. Let R be the set of all R ⊆ Hκ+

such that |R| = κ ⊆ R and R ∩ κ+ ∈ κ+.
First, we prove the following:

(i) For any stationary X ⊆ Pκ(Hκ+)∩ IAω, there is R ∈ R with X ∩Pκ(R) is
stationary.

Suppose X is a stationary subset of Pκ(Hκ+) ∩ IAω. By shrinking X if necessary,
we may assume that M ≺ 〈Hκ+ ,∈〉 for all M ∈ X. By SRκ � IAω, we can take
R ⊆ Hκ+ such that |R| = κ ⊆ R and X ∩ Pκ(R) is stationary. It suffices to prove
that R ∩ κ+ ∈ κ+. Since X ∩ Pκ(R) is stationary, it follows that R ≺ 〈Hκ+ ,∈〉.
Then, from the fact that κ ⊆ R, it follows that R ∩ κ+ ∈ κ+.

For each γ ∈ κ+ \κ, we can take a club Yγ ⊆ Pκ(γ) of size κ since |γ| = κ. Note
that for any R ∈ R, there are non-stationary many M ∈ Pκ(R) with M ∩ κ+ /∈
YR∩κ+ . Let Y :=

⋃
γ∈κ+\κ Yγ . Then, we have the following.

(ii) |Y | = κ+.
(iii) For any R ∈ R, the set {M ∈ Pκ(R) | M ∩ κ+ /∈ Y } is non-stationary.

By (i) and (iii), the set {M ∈ Pκ(Hκ+) ∩ IAω | M ∩ κ+ /∈ Y } is non-stationary,
that is, there is a club Z ⊆ Pκ(Hκ+) such that {M ∩ κ+ | M ∈ Z ∩ IAω} ⊆ Y .
Then, (κ+)ω ≤ κ+ by (ii) and Lemma 5.5. �

Next, we prove Proposition 5.2 (2). We use the following technical lemma.
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Lemma 5.6. Let ν be a singular cardinal of cofinality ω such that µω < ν for all
µ < ν, and νω > ν+. Suppose A ⊆ Pν(ν

+) and |A| ≤ ν+. Let C be a club subset of
ν+ and S be a stationary subset of ν+ ∩ Cf(ω). Then there is a strictly increasing
sequence 〈γn | n < ω〉 of elements of C with the following properties.

(i) supn<ω γn ∈ S.
(ii) A ∩

⋃
n<ω sucC(γn) \ γn is bounded in supn<ω γn for any A ∈ A.

Proof. Let D be the set of all δ ∈ C such that for any δ′ < δ there is δ′′ < δ with
|C ∩ (δ′′ \ δ′)| = ν. Note that D is club in ν+. Take δ ∈ D ∩ S. We will find
〈γn | n < ω〉 satisfying (ii) such that supn<ω γn = δ.

Take a strictly increasing sequence 〈δn | n < ω〉 in C converging to δ such
that δ0 = 0 and |C ∩ (δn+1 \ δn)| = ν for all n < ω. Moreover, take a bijection
π : C ∩ δ → (<ων \ {∅}) such that π[C ∩ (δn+1 \ δn)] = n+1ν.

For α < δ, let τ(α) := max(C ∩ (α + 1)). Note that α ∈ sucC(τ(α)) \ τ(α).
Then, for each A ∈ A, let BA be the set of all b ∈ ων such that there is a countable
x ⊆ A ∩ δ with b =

⋃
α∈x π(τ(α)). Note that |BA| ≤ |A|ω < ν, since |A| < ν, and

µω < ν for all µ < ν. Let B :=
⋃

A∈A BA. Then |B| ≤ ν+ since |A| ≤ ν+.
Since νω > ν+, we can take b∗ ∈ ων\B. For n < ω, take γn ∈ C∩(δn+1\δn) with

π(γn) = b∗ � (n + 1). Clearly, 〈γn | n < ω〉 is strictly increasing, and supn<ω γn =

δ ∈ S. We check (ii). For a contradiction, A ∩
⋃

n<ω sucC(γn) \ γn is unbounded
in δ for some A ∈ A. Take a countable cofinal x ⊆ A∩

⋃
n<ω sucC(γn)) \ γn. Since

τ(α) = γn for α ∈ sucC(γn) \ γn, we have that b∗ =
⋃

α∈x π(τ(α)) ∈ BA ⊆ B. This
contradicts that b∗ /∈ B. �

Now, we prove Proposition 5.2 (2).

Proof of Proposition 5.2 (2). We prove the contraposition. Let κ be a regular un-
countable cardinal and ν be a singular cardinal > κ of cofinality ω. Suppose µω < ν

for all cardinals µ < ν, and νω > ν+. We prove that SRκ � IAω fails. Below, let
λ := ν+.

For each α ∈ λ ∩ Cf(> ω), take a ⊆-increasing sequence 〈Aα,n | n < ω〉 such
that

⋃
n<ω Aα,m = α and |Aα,m| < ν for all m < ω. Take a partition 〈Sδ | δ < κ〉

of λ ∩ Cf(ω) such that each Sδ is stationary in λ.
Then, let X be the set of all M ∈ Pκ(Hλ+) ∩ IAω such that

(i) M ∩ κ ∈ κ.
(ii) sup(M ∩ λ) ∈ SM∩κ \M .
(iii) M ∩ Aα,m is bounded in sup(M ∩ λ) for any α ∈ λ ∩ Cf(> ω) and any

m < ω.
It suffices to prove that X is stationary in Pκ(Hλ) and that X is non-reflecting,
i.e. X ∩ Pκ(R) is non-stationary for any R ⊆ Hλ with |R| = κ ⊆ R.

First, we prove that X is stationary. Take an arbitrary club Z ⊆ Pκ(Hλ). We
find M ∈ X ∩ Z.
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Let C and δ be as in Lemma 5.5. By Lemma 5.6, take a strictly increasing
sequence 〈γn | n < ω〉 such that supn<ω γn ∈ Sδ and Aα,m ∩

⋃
n<ω sucC(γn) \ γn is

bounded in supn<ω γn for all α ∈ λ∩Cf(> ω) and all m < ω. Let M be the one as
in Lemma 5.5 for this 〈γn | n < ω〉. Then, it is easy to check that M ∈ X ∩ Z.

Next, we prove that X is non-reflecting. Take an arbitrary R ⊆ Hλ with |R| =
κ ⊆ R. We show that X ∩ Pκ(R) is non-stationary.

Let α := sup(R ∩ λ). If α ∈ R, then there is no M ∈ X ∩ Pκ(R) with α ∈ M ,
since sup(M ∩ λ) /∈ M for any M ∈ X by (ii). So X ∩ Pκ(R) is non-stationary in
this case. Thus, we assume that α /∈ R. The rest of the proof splits into two cases
according to cf(α).

First, suppose cf(α) = ω. Take δ < κ with α ∈ Sδ. Let Y0 be the set of all
M ∈ Pκ(R) with sup(M ∩ λ) = α and δ < M ∩ κ ∈ κ. Then it is easy to see that
Y0 is club in Pκ(R). But X ∩ Y0 = ∅ by the property (ii) of elements of X. So
X ∩ Pκ(R) is non-stationary.

Next, suppose cf(α) > ω. Then, we can take m < ω with sup(R ∩ Aα,m) = α.
Let Y1 be the set of all M ∈ Pκ(R) such that M∩Aα,m is unbounded in sup(M∩λ).
Then, it is easy to see that Y1 is club in Pκ(R). But X ∩ Y1 = ∅ by the property
(iii) of elements of X. Hence X ∩ Pκ(R) is non-stationary. �

6. SR∗
κ � IA and 2µ for µ < κ

In this section, we show that SR∗
κ � IA does not give any bound on 2µ for a

regular uncountable cardinal µ < κ. We also prove that SR∗
κ � IA>ω does not give

any bound on 2ω. More precisely, we prove the following.

Theorem 6.1. Assume GCH. Let µ and κ be regular cardinals with µ < κ and
κ ∈ I[κ]. Also, let P be a < µ-closed poset with the < µ+-c.c. and the < µ+-
approximation property. Suppose G is a P-generic filter over V .

(1) If µ = ω, and SR∗
κ � IA>ω holds in V , then SR∗

κ � IA>ω holds also in V [G].
(2) If µ > ω, and SR∗

κ � IA holds in V , then SR∗
κ � IA holds also in V [G].

Corollary 6.2. Assume GCH. Let κ be a regular uncountable cardinal, τ be a
supercompact cardinal > κ and ρ be an ordinal.

(1) There is a forcing extension V ∗ of V in which the following hold.
(i) If δ is a regular cardinal in V with δ ≤ κ or δ ≥ τ , then δ remains a

regular cardinal.
(ii) SR∗

κ � IA>ω holds, and 2ω ≥ ρ.
(2) Suppose µ is a regular uncountable cardinal < κ. Then there is a forcing

extension V ∗∗ of V in which (i) above and the following holds.
(iii) SR∗

κ � IA holds, and 2µ ≥ ρ.

Proof of Corollary 6.2 from Theorem 6.1. Let V ′ be a forcing extension of V by
Iκ in §3. Then κ ∈ I[κ] in V ′ by Lemma 3.5. Moreover, in V ′, GCH holds, all
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regular cardinals in V remain regular cardinals, and τ remains supercompact in V ′

by Lemma 3.4 and the fact that |Iκ| = κ in V .
Next, let V ′′ be a forcing extension of V ′ by Col(κ,<τ). Then, (i) of the corollary

holds in V ′′. Moreover, in V ′′, SR∗
κ � IA holds in V ′′ by Proposition 4.1 and 4.2.

Note also that GCH holds and κ ∈ I[κ] in V ′′.
Now, let V ∗ be a forcing extension of V ′′ by Add(ω, ρ). Then V ∗ witnesses (1)

of the corollary by Theorem 6.1 (1) and Fact 2.4. For (2), let V ∗∗ be a forcing
extension of V ′′ by Add(µ, ρ). Then V ∗∗ witnesses (2) of the corollary by Theorem
6.1 (2) and Fact 2.4. �

Below, we prove Theorem 6.1. A difficulty to prove this lies in that a forcing by
P adds many new sets of cardinality < κ, and Pκ(H) are not absolute between V

and V P for a set H ∈ V . In fact, Gitik [9] proved that if µ = ω, and P adds a real,
then X := Pκ(κ

+)V
P \ Pκ(κ

+)V is stationary. Also, X ∩ Pκ(α) is non-stationary
for any α < κ+ since Pκ(α)

V contains a club set in V P.
We use the following proposition, which gets rid of this difficulty.

Proposition 6.3. In V , assume GCH, let µ, κ and λ be regular cardinals with
µ < κ < λ, and let P be a < µ-closed poset with the < µ+-c.c. and the < µ+-
approximation property, which belongs to HV

λ . Suppose G is a P-generic filter over
V . Then, we have (1), (2) and (3) below in V [G], where Φ(ζ) is the following
statement for a regular cardinal ζ < κ.

There is a club Z ⊆ Pκ(HV [G]
λ ) such that if M ∈ Z, and M is

i.a. of length ζ, then N := M ∩ HV
λ ∈ V , N is i.a. of length ζ in

V , and M = N [G].

(1) Φ(ζ) holds for every regular cardinal ζ < µ.
(2) Φ(ζ) holds for every regular cardinal ζ with µ < ζ < κ.
(3) If µ > ω, then Φ(µ) holds.

First, we prove Theorem 6.1 using Proposition 6.3.

Proof of Theorem 6.1 from Proposition 6.3. We only prove (2). The proof of (1) is
similar as (2) and left to the readers. Working in V [G], we prove the contraposition
of (2).

Assume SR∗
κ � IA fails in V [G]. Then, we can take a regular cardinal λ > κ and

a stationary X ⊆ HV [G]
λ ∩ IA such that for any R ⊆ HV [G]

λ , if |R| = κ ⊆ R and R

is i.a. of length κ, then X ∩ Pκ(R) is non-stationary.
We may also assume P ∈ HV

λ by Lemma 3.2. Here note that κ ∈ I[κ] in V [G]

since it holds in V , and cofinalities are absolute between V and V [G]. So we
may assume that every M ∈ X is i.a. of regular length by Lemma 3.3. Then, by
Proposition 6.3, we may also assume that if M ∈ X, then N := M ∩ HV

λ ∈ V , N
is i.a. in V and M = N [G].
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In V , let Q be the set of all Q ⊆ HV
λ such that |Q| = κ ⊆ Q ≺ 〈HV

λ ,∈, κ,P〉 and
Q is i.a. of length κ. We claim the following.

Claim. There is 〈ZQ | Q ∈ Q〉 ∈ V such that the following hold for all Q ∈ Q.

(i) ZQ is club in Pκ(Q) in V .
(ii) N [G] /∈ X for any N ∈ ZQ.

Proof of Claim. First note that for any Q ∈ Q, in V [G], |Q[G]| = κ ⊆ Q[G] and
Q[G] is i.a. of length κ. The latter is because if 〈Qξ | ξ < κ〉 is an i.a. sequence
to Q in V , then 〈Qξ[G] | ξ < κ〉 is an i.a. sequence to Q[G] in V [G]. So, for each
Q ∈ Q, X ∩ Pκ(Q[G]) is non-stationary in V [G]. Then, in V [G], for each Q ∈ Q,
let Z ′′

Q be a club subset of Pκ(Q[G]) with Z ′′
Q ∩X = ∅, and let Z ′

Q be the set of all
N ∈ Pκ(Q) with N [G] ∈ Z ′′

Q. Then it is easy to see that Z ′
Q is club in Pκ(Q) in

V [G], and N [G] /∈ X for any N ∈ Z ′
Q.

Take a sequence 〈Ż ′
Q | Q ∈ Q〉 ∈ V of P-names such that (Ż ′

Q)
G = Z ′

Q for all
Q ∈ Q. Also, take p ∈ G which forces that Ż ′

Q is club in Pκ(Q) for all Q ∈ Q. In
V , for each Q ∈ Q, let ZQ be the set of all N ∈ Pκ(Q) such that p 
P “N ∈ Ż ′

Q ”.
Then 〈ZQ | Q ∈ Q〉 ∈ V . Since P has the κ-c.c., each ZQ is club in Pκ(Q) in V

by Lemma 2.3. Moreover, ZQ ⊆ Z ′
Q for all Q ∈ Q. Therefore 〈ZQ | Q ∈ Q〉 is as

desired. � (Claim)

In V , let Z :=
⋃

Q∈Q ZQ and Y := (Pκ(HV
λ ) ∩ IA) \ Z. If Y is stationary in

Pκ(HV
λ ) in V , then so is the set Y ′ = {N ∈ Y | N ≺ 〈HV

λ ,∈, κ,P〉}. Moreover,
Y ′ ∩ Pκ(Q) is non-stationary for any i.a. set Q of length κ. (If Q ≺ 〈HV

λ ,∈, κ,P〉,
then Q ∈ Q, and so (Y ′ ∩ Pκ(Q)) ∩ ZQ = ∅ by the definition of Y . Otherwise,
Y ′ ∩ Pκ(Q) is non-stationary since N ≺ 〈HV

λ ,∈, κ,P〉 for all N ∈ Y ′.) So Y ′ will
be a counterexample of SR∗

κ � IA in V if Y is stationary. Thus it suffices to prove
that Y is stationary in V .

In V , take an arbitrary F : <ωHV
λ → HV

λ . It suffices to find N ∈ Y such that
N ∩ κ ∈ κ and N is closed under F . Since X is stationary in V [G], we can take
M ∈ X such that M ∩ κ ∈ κ and M is closed under F . Let N := M ∩ HV

λ . Note
that N ∈ V , N ∈ IA in V and M = N [G] by the assumption on X. Then, in V ,
N ∈ Pκ(HV

λ ) ∩ IA, and N /∈ Z by (ii) of Claim and the fact that N [G] = M ∈ X.
So N ∈ Y . Moreover, Y is closed under F since so is M . Thus N is as desired. �

Below, we prove Proposition 6.3. First we prove (1).

Proof of Proposition 6.3 (1). We work in V [G]. Let ζ be a regular cardinal < µ.
Take a well-ordering ∆ of HV [G]

λ , and let M := 〈HV [G]
λ ,∈,∆,HV

λ , µ, κ,P, G〉.
Then let Z be the set of all M ∈ Pκ(HV [G]

λ ) such that M ≺ M and M ∩ κ ∈ κ.
Note that Z is club in Pκ(HV [G]

λ ). We show that Z witnesses Φ(ζ).
Suppose M ∈ Z and M is i.a. of length ζ. Let N := M ∩HV

λ . Note that for any
P-name ȧ ∈ N , we have ȧG ∈ M since M ≺ M. Note also that for any a ∈ M ,
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there is a P-name ȧ ∈ N with ȧG = a. So M = N [G]. We prove that N ∈ V and
N is i.a. of length ζ in V .

Let 〈Mξ | ξ < ζ〉 be an i.a. sequence to M . For each ξ < ζ, by the <µ+-c.c. of
P, let N ′

ξ be the ∆-least element of Pκ(HV
λ )

V such that Mξ ∩HV
λ ⊆ N ′

ξ. Note that
〈N ′

ξ | ξ < ζ ′〉 ∈ M for all ζ ′ < ζ. Note also that N ′
ξ ⊆ M for all ξ < ζ since N ′

ξ ∈ M

and |N ′
ξ| < κ. So N =

⋃
ξ<ζ N

′
ξ. But 〈N ′

ξ | ξ < ζ〉 ∈ V by the <µ-closure of P. So
N =

⋃
ξ<ζ N

′
ξ ∈ V .

For each ξ < ζ, let Nξ :=
⋃

η<ξ N
′
η. Then 〈Nξ | ξ < ζ〉 ∈ V . Moreover,

〈Nξ | ξ < ζ〉 is a ⊆-increasing,
⋃

ξ<ζ Nξ = N , and 〈Nξ | ξ < ζ ′〉 ∈ M ∩HV
λ = N for

all ζ ′ < ζ. Hence N is i.a. of length ζ in V . �

To prove Proposition 6.3 (2) and (3), first we reduce them to the following lemma.

Lemma 6.4. In V , assume GCH, let µ and λ be regular cardinals with µ ≤ ζ < λ,
and let P be a < µ-closed poset with the < µ+-c.c. and the < µ+-approximation
property, which belongs to HV

λ . Suppose G is a P-generic filter over V . Then, we
have (1) and (2) below in V [G], where Ψ(ζ) is the following statement for a regular
cardinal ζ with µ ≤ ζ < λ.

There is a club Z ⊆ Pζ+(HV [G]
λ ) such that if M ∈ Z, and M is

i.a. of length ζ, then N := M ∩HV
λ ∈ V .

(1) Ψ(ζ) holds for every regular cardinal ζ with µ < ζ < λ.
(2) If µ > ω, then Ψ(µ) holds.

First, we prove Proposition 6.3 (2) and (3) using Lemma 6.4. For this, we use
the following lemma.

Lemma 6.5. In V , assume GCH. Let µ, λ, P and G be as in Lemma 6.4, and let ζ
be a regular cardinal with µ ≤ ζ < λ. In V [G], suppose M ≺ 〈HV [G]

λ ,∈,HV
λ , µ,P, G〉,

|M | = ζ and M is i.a. of length ζ. Let N := M ∩HV
λ . Then, (<ζN) ∩ V ⊆ N .

Proof. Take an arbitrary f ∈ (<ζN)∩V = (<ζN)∩HV
λ . It suffices to prove f ∈ M .

Let η := dom(f).
Let 〈Mξ | ξ < ζ〉 be an i.a. sequence to M . By the regularity of ζ, we can take

ξ < ζ with ran(f) ⊆ Mξ. Since P has the < µ+-c.c., we can take K ∈ HV
λ such

that Mξ ⊆ K and |K| = max{µ, |Mξ|}. By the elementarity of M , we can take
such K ∈ M . Note that ζ ⊆ M . So (ηK) ∩ V = (ηK) ∩ HV

λ ∈ M . Note also that
|(ηK) ∩ V | ≤ ζ since |K| ≤ ζ, and GCH holds in V . Thus (ηK) ∩ V ⊆ M . Since
f ∈ (ηK) ∩ V , we have f ∈ M . �

Proof of Proposition 6.3 (2) and (3) from Lemma 6.4. Let µ, κ, λ, P and G be as
in Proposition 6.3, and let ζ be a regular uncountable cardinal such that µ ≤ ζ < κ.
Working in V [G], we prove Φ(ζ).

Note that Ψ(ζ) holds by Lemma 6.4. Let Z ′ be a club subset of Pζ+(HV [G]
λ )

witnessing Ψ(ζ). Take a well-ordering ∆ of HV [G]
λ , and let M′ be the structure
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〈HV [G]
λ ,∈,∆,HV

λ , µ, κ,P, G〉. We may assume that if M ′ ∈ Z ′, then M ′ ≺ M′, and
|M ′| = ζ ⊆ M ′. Let M be the structure obtained from M′ by adding Z ′ as a
predicate. Then, let Z be the set of all M ∈ Pκ(HV [G]

λ ) such that M ≺ M and
M ∩ κ ∈ κ. We show that Z witnesses Φ(ζ).

Suppose M ∈ Z and M is i.a. of length ζ. Let N := M ∩HV
λ . Then M = N [G]

since M ≺ M. We show that N ∈ V and N is i.a. of length ζ in V .
Let 〈Mξ | ξ < ζ〉 be an i.a. sequence to M . Using the <κ-c.c. of P, for each ξ < ζ,

let Kξ be the ∆-least element of HV
λ such that Mξ ∩HV

λ ⊆ Kξ and |Kξ| < κ in V .
By recursion on ξ < ζ, let M ′

ξ be the ∆-least element of Z ′ such that
⋃

η<ξ M
′
η ⊆ M ′

ξ

and 〈M ′
η | η < ξ〉,Kξ ∈ M ′

ξ. Let M ′ :=
⋃

ξ<ζ M
′
ξ. Then M ′ ∈ Z ′, and M ′ is i.a. of

length ζ since 〈M ′
ξ | ξ < ζ〉 is an i.a. sequence to M ′. Note also that M ′

ξ ∈ M for all
ξ < ζ since M ′

ξ is definable from 〈Mη | η ≤ ξ〉 in M. Then M ′
ξ ⊆ M since M ≺ M

and M ∩ κ ∈ κ. So M ′ ⊆ M .
Let N ′ := M ′ ∩ HV

λ . Then N ′ ∈ V since Z ′ witnesses Ψ(ζ). Moreover, N ′ ≺
〈HV

λ ,∈, κ〉 since M ′ ≺ M′.
Note also that |N ′| = ζ in V [G] since |M ′| = ζ ⊆ N ′ ⊆ M ′. Then |N ′| = ζ in

V by the <ζ+-c.c. of P. In V , take a bijection f : ζ → N ′, and let N ′
ξ := f [ξ] for

each ξ < ζ. Then,
⋃

ξ<ζ N
′
ξ = N ′, and all initial segments of 〈N ′

ξ | ξ < ζ〉 belong to
N by Lemma 6.5. So 〈N ′

ξ | ξ < ζ〉 is an i.a. sequence to N ′.
In V , let N∗ :=

⋃
{K ∈ N ′ | |K| < κ} and N∗

ξ :=
⋃
{K ∈ N ′

ξ | |K| < κ} for
ξ < ζ. Then it is easy to see that 〈N∗

ξ | ξ < ζ〉 is an i.a. sequence to N∗ in V . So
it suffices to show that N∗ = N (= M ∩HV

λ ).
Since N ′ ⊆ M ≺ M and M ∩ κ ∈ κ, we have N∗ ⊆ M . Also, N ⊆ HV

λ clearly.
So N∗ ⊆ N . On the other hand, N ⊆

⋃
ξ<ζ Kξ by the choice of 〈Kξ | ξ < ζ〉.

Moreover,
⋃

ξ<ζ Kξ ⊆ N∗ since Kξ ∈ N ′ and |Kξ| < κ for all ξ < ζ. Hence
N ⊆ N∗. �

Below, we prove Lemma 6.4. First, we prove (1).

Proof of Lemma 6.4 (1). Let ζ be a regular cardinal with µ < ζ < λ. Working in
V [G], we prove Ψ(ζ).

Let M be the structure 〈HV [G]
λ ,∈,HV

λ , µ, ζ,P, G〉, and let Z be the set of all
M ∈ Pζ+(HV [G]

λ ) such that M ≺ M and ζ ⊆ M . Then Z is club in Pζ+(HV [G]
λ ).

We claim that Z witnesses Ψ(ζ).
Suppose M ∈ Z and M is i.a. of length ζ. Let N := M ∩ HV

λ . We must prove
N ∈ V . Since P has the < µ+-approximation property, it suffices to prove that
N ∩A ∈ V for all A ∈ V with |A| ≤ µ. Suppose A ∈ V and |A| ≤ µ.

Let 〈Mξ | ξ < ζ〉 be an i.a. sequence to M . Since ζ > µ, we can take ξ < ζ with
N ∩A ⊆ Mξ ∩HV

λ . By the <µ+-c.c. of P and the elementarity of M , we can take
K ∈ M ∩HV

λ such that Mξ ∩HV
λ ⊆ K and |K| ≤ ζ. Then N ∩A ⊆ K ⊆ M ∩HV

λ =

N , and K,A ∈ V . So N ∩A = K ∩A ∈ V . �
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Before proving Lemma 6.4 (2), we make some preliminaries.

Lemma 6.6. Let λ be a regular uncountable cardinal and ∆ be a well-ordering
of Hλ. Suppose N0, N1 ≺ 〈Hλ,∈,∆〉, and both N0 ∩ λ and N1 ∩ λ are ω-closed.
Suppose also that there is ι ∈ N0 ∩N1 ∩ λ with N0 ∩ ι 6= N1 ∩ ι, and let ι∗ be the
least such ι. Then ι∗ is a regular cardinal, and sup(N0 ∩ ι∗) 6= sup(N1 ∩ ι∗).

Proof. First, we prove that sup(N0 ∩ ι∗) 6= sup(N1 ∩ ι∗). Assume not. Then, for
any α ∈ (Ni ∩ ι∗) \ (N1−i ∩ ι∗), we can take α′ ∈ Ni−1 ∩ ι∗ with α′ > α, and such
α′ is not in Ni since if α′ ∈ Ni, then α′ ∈ Ni ∩Ni−1 ∩ λ, Ni ∩ α′ 6= Ni−1 ∩ α′, and
α′ < ι∗, which contradicts to the choice of ι∗. Then we can recursively construct
an increasing sequence 〈αn | n < ω〉 such that αn ∈ (N0 ∩ ι∗) \ (N1 ∩ ι∗) if n is
even and αn ∈ (N1 ∩ ι∗) \ (N0 ∩ ι∗) if n is odd. Note that α∗ := supn<ω αn ≤ ι∗

and α∗ ∈ N0 ∩N1 since both N0 ∩λ and N1 ∩λ are ω-closed. Let A be the ∆-least
cofinal subset of α∗ of order type ω. Then A ∈ N0 ∩N1, and so A ⊆ N0 ∩N1 since
A is countable. Take α ∈ A with α0 < α. Then α ∈ N0 ∩ N1, N0 ∩ α 6= N1 ∩ α,
and α < ι∗. This contradicts to the choice of ι∗.

Next, we prove that ι∗ is regular. Assume not. Let ι∗∗ := cf(ι∗) < ι∗. Note
that ι∗∗ ∈ N0 ∩ N1 since ι∗ ∈ N0 ∩ N1. Take the ∆-least increasing continuous
cofinal function f : ι∗∗ → ι∗. Note that f ∈ N0 ∩ N1. Then, for each i = 0, 1,
it easily follows from the elementarity of Ni that sup(Ni ∩ ι∗) = f(sup(Ni ∩ ι∗∗)).
Then, since sup(N0 ∩ ι∗) 6= sup(N1 ∩ ι∗), we have sup(Ni ∩ ι∗∗) 6= sup(Ni ∩ ι∗∗). In
particular, N0 ∩ ι∗∗ 6= N1 ∩ ι∗∗. This contradicts the choice of ι∗. �

Lemma 6.7. Let ν be a singular cardinal of cofinality ω, I be a set of regular
cardinals with sup I = ν and ~f = 〈fα | α < ν+〉 be a scale in ΠI. Suppose
〈〈ιs, δs〉 | s ∈ <ω2〉 is a sequence with the following properties.

(i) δs < ιs ∈ I for all s ∈ <ω2.
(ii) For all s ∈ <ω2, ιs < ιs_0 = ιs_1, and δs_0 6= δs_1.
(iii) For any b ∈ ω2, Ib := {ιb�n | n < ω} is cofinal in ν.

For each b ∈ ω2, let gb ∈ ΠIb be such that gb(ιb�n) = δb�n. Then, there is b ∈ ω2

such that gb 6=∗ fα �Ib for any α < ν+.

Proof. For a contradiction, assume that for any b ∈ <ω2 there is αb < ν+ with
gb =

∗ fαs
�Ib. For each s ∈ <ω2, let Bs := {b ∈ ω2 | s ⊆ b} and As := {αb | b ∈ Bs}.

Then let

γ := min{sup+ As | s ∈ <ω2} ,

where sup+ A denotes sup{α+1 | α ∈ A}. Take s−1 ∈ <ω2 such that γ = sup+ As−1 .
Note the following.

(iv) sup+ As = γ for all s ∈ <ω2 with s−1 ⊆ s.

The rest of the proof splits into three cases according to γ.
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First, suppose γ is a successor ordinal. We recursively construct a ⊆-increasing
sequence 〈sn | n < ω〉 of elements of <ω2 extending s−1 such that

(v) δsn = fγ−1(ιsn) if n is even and δsn 6= fγ−1(ιsn) if n is odd.
If sn−1 has been taken, then take sn as follows. First, suppose n is even. By (iv),
we can take b ∈ Bsn−1 with gb =

∗ fγ−1 � Ib. Take k < ω such that dom(sn−1) < k

and δb�k = gb(ιb�k) = fγ−1(ιb�k). Then let sn := b�k. Next, suppose n is odd. Let
ti := sn−1

_i for i = 0, 1. By (ii), we can take i < 2 with δti 6= fγ−1(ιti). Let sn be
such ti.

Let b :=
⋃

n<ω sn. By (v), both of the sets {ι ∈ Ib | gb(ι) = fγ−1(ι)} and
{ι ∈ Ib | gb(ι) 6= fγ−1(ι)} are unbounded in Ib. So there is no α < ν+ with
gb =

∗ fα �Ib since ~f is <∗-increasing. This contradicts that gb =
∗ fαb

�Ib.
Next, suppose γ is a limit ordinal of cofinality ω. Take a cofinal sequence 〈γm |

m < ω〉 in γ. We recursively take a ⊆-increasing sequence 〈sn | n < ω〉 of elements
of <ω2 extending s−1 such that

(vi) δsn > fγm
(ιsn) for all n < ω and all m ≤ n.

If sn−1 has been taken, then take sn as follows. By (iv), take b ∈ Bsn−1 with
αb > γm for all m ≤ n. Then, we can take k < ω such that dom(sn−1) < k and
δb�k = gb(ιb�k) = fγm

(ιb�k) for all m ≤ n. Let sn := b�k.
Let b :=

⋃
n<ω sn. By (vi), fγm

<∗ gb for all m < ω. Then αb ≥ supm<ω γm = γ.
Since b ∈ Bs−1

, this contradicts that sup+ As−1
= γ.

Finally, suppose γ is a limit ordinal of cofinality > ω. Then,

β := sup+{minAs | s−1 ⊆ s ∈ <ω2} < γ .

Note that minAs < β < supAs for all s ∈ <ω2 with s−1 ⊆ s. We recursively take
a ⊆-increasing sequence 〈sn | n < ω〉 of elements of <ω2 extending s−1 such that

(vii) δsn < fβ(ιsn) if n is even, and δsn > fβ(ιsn) if n is odd.
If sn−1 has been taken, then take sn as follows. First, suppose n is even. Then,
since minAsn−1

< β, we can take b ∈ Bsn−1
with gb <∗ fβ � Ib. Take k < ω

such that dom(sn−1) < k and δb�k = gb(ιb�k) < fβ(ιb�k). Then let sn := b � k.
Next, suppose n is odd. Then, since supAsn−1 > β, we can take b ∈ Bsn−1 with
fβ � Ib <∗ gb. Take k < ω such that dom(sn−1) < k and δb�k = gb(ιb�k) > fβ(ιb�k).
Then let sn := b�k.

Let b :=
⋃

n∈ω sn. By (vii), there is no α < ν+ with gb =∗ fα � Ib. This
contradicts that gb = fαb

�Ib. �

Now we prove Lemma 6.4 (2).

Proof of Lemma 6.4 (2). Suppose µ > ω. Working in V [G], we prove Ψ(µ).
Take a bijection F : λ → HV

λ in V . Let M := 〈HV [G]
λ ,∈,HV

λ , F, µ,P, G〉, and let
Z be the set of all M ∈ Pµ+(HV [G]

λ ) such that M ≺ M and µ ⊆ M . Then, Z is
club in Pµ+(HV [G]

λ ). We show that Z witnesses Ψ(ζ).
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Suppose M ∈ Z and M is i.a. of length µ, and let N := M ∩ HV
λ . We prove

that N ∈ V . Note that N = F [M ∩ λ] since M ≺ M. So it suffices to prove that
M ∩λ ∈ V . By induction on cardinals ν with µ ≤ ν ≤ λ, we prove that M ∩ν ∈ V .

Note that if ν = µ, then M ∩ν = µ ∈ V . Suppose ν is a cardinal with µ < ν ≤ λ,
and M ∩ ρ ∈ V for all cardinals ρ with µ ≤ ρ < ν. We show that M ∩ ν ∈ V . Our
proof splits into four cases.

Case 1. ν is a successor cardinal.
Let ρ be a cardinal with ν = ρ+. If ρ /∈ M , then M ∩ ν = M ∩ ρ ∈ V since

M ≺ M. So we assume that ρ ∈ M .
Let δ := sup(M ∩ ν) > ρ. Since M is i.a. of length µ, there is a club C ⊆ δ

of oder-type µ with C ⊆ M . (Take an i.a. sequence 〈Mξ | ξ < ζ〉 to M , and let
C = {sup((

⋃
η<ξ Mη) ∩ ν) | ξ < ζ}. Then C ⊆ M , and C is a club subset of δ of

order-type µ.) Since δ > ρ, we may assume C ∩ ρ = ∅.
Let A := M ∩ ρ ∈ V . For each α with ρ ≤ α < ν, let πα : ρ → α be the F -least

bijection in V . Note that M ∩ α = πα[A] since M ≺ M. Hence we have
(i) πα[A] = πβ [A] ∩ α for all α, β ∈ C with α < β.

Take a P-name Ċ of C and p ∈ G which forces (i) and that Ċ is club in δ. By
the < µ-closure of P, in V , we can take a descending sequence 〈pξ | ξ < µ〉 in P
below p and an increasing continuous cofinal sequence 〈γξ | ξ < µ〉 in δ such that
pξ 
P “ γξ ∈ Ċ ”. Let D := {γξ | ξ < µ} ∈ V . Then D is club in δ, and

(ii) πα[A] = πβ [A] ∩ α for all α, β ∈ D with α < β.
Since µ > ω, C ∩ D is unbounded in δ. Then, M ∩ ν =

⋃
α∈C∩D πα[A] =⋃

α∈D πα[A] by (i) and (ii). Then, since D,A, 〈πα | α < ν〉 ∈ V , we have that
M ∩ ν ∈ V .

Case 2. ν is a limit cardinal with cf(ν) < µ.
Take a sequence 〈ρξ | ξ < cf(ν)〉 of cardinals which converges to ν. By the

induction hypothesis, M∩ρξ ∈ V for each ξ < cf(ν). Then 〈M∩ρξ | ξ < cf(µ)〉 ∈ V

since P is <µ-closed. Then, M ∩ ν =
⋃

ξ<cf(ν) M ∩ ρξ ∈ V .

Case 3. ν is a limit cardinal with cf(ν) > µ.
Since |M | = µ < cf(ν), we can take a cardinal ρ < ν such that M ∩ ν = M ∩ ρ.

But M ∩ ρ ∈ V by the induction hypothesis.

Case 4. ν is a limit cardinal with cf(ν) = µ.
For a contradiction, assume M ∩ ν /∈ V . Then, note that M ∩ ν is unbounded in

ν. Let Ṁ be a P-name of M and Ġ be the canonical P-name for a P-generic filter.
Then we can take p ∈ G which forces the following.

(iii) Ṁ ≺ 〈HV [Ġ]
λ ,∈,HV

λ , F, µ,P, Ġ〉, |Ṁ | = µ, and Ṁ is i.a. of length µ.
(iv) Ṁ ∩ ρ ∈ V for all ρ < ν.
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(v) Ṁ ∩ ν /∈ V .

Below, we work in V .
Take a sufficiently large regular cardinal θ and a countable elementary submodel

K of 〈HV
θ ,∈, λ, F, µ, ν,P, p, Ṁ〉. Let χ := sup(K ∩ ν). Note that χ is a singular

cardinal of cofinality ω. Let 〈χn | n < ω〉 be the F -least increasing cofinal sequence
in χ. Let I be the set of all regular cardinals ι with µ < ι < χ. By Lemma 3.7, let
〈fα | α < χ+〉 be the F -least µ-continuous scale in ΠI.

For each s ∈ <ω2, we will define ιs, δs as in Lemma 6.7. For this, we will use the
following claim.

Claim. Suppose q ∈ P∩K and q ≤ p. Suppose also that ρ ∈ K ∩χ, A ∈ P(ρ)∩K

and q 
P “ Ṁ ∩ ρ = A ”. Then, χn ∈ A for all n < ω with χn < ρ.

Proof of Claim. First, p forces that Ṁ ∩ν is unbounded in ν by (iv) and (v). Then,
we can recursively take a descending sequence 〈qm | m < ω〉 in P ∩K below q and
a sequence 〈αm | m < ω〉 in K ∩ χ so that qm 
P “αm ∈ Ṁ ” and αm ≥ χm. By
the <µ-closure of P, take q∗ ∈ P with q∗ ≤ qm for all m < ω. Then, by Fact 3.1 (3)
and (iii) above, q∗ forces that χ = supm<ω αm ∈ Ṁ and so χn ∈ Ṁ for all n < ω.
Also, q∗ forces that Ṁ ∩ ρ = A. So χn ∈ A for all n < ω with χn < ρ. � (Claim)

By recursion on s ∈ <ω2, we will define ιs ∈ I∩χ, δs < ιs, ps ∈ P∩K, ρs ∈ K∩χ

and As ∈ P(ρs) ∩K so that the following hold for all s ∈ <ω2.

(vi) p∅ ≤ p, and ps_i ≤ ps for both i = 0, 1.
(vii) ps 
P “As = Ṁ ∩ ρs ”.
(viii) ιs ∈ As, and δs = sup(As ∩ ιs).
(ix) ιs_0 = ιs_1, and δs_0 6= δs_1.
(x) There is n < ω such that ρs < χn < ρs_0, ρs_1.

Let ρ∅ := µ++ ∈ K. By (iv), we can take p∅ ≤ p and A∅ ⊆ µ++ in K such that
p∅ 
P “ Ṁ ∩ µ++ = A∅ ”. Then, let ι∅ := µ+ ∈ K and δ∅ := sup(A∅ ∩ µ+) ∈ K.
Note that ι∅ ∈ A∅ by (iii). So ι∅, δ∅, p∅, ρ∅ and A∅ satisfies (vi)–(x).

Suppose s ∈ <ω2, and ιs, δs, ps, ρs and As has been taken. We define ιs_i, δs_i,
ps_i, ρs_i and As_i for i = 0, 1. By (iv) and (v), we can take ρ′ > ρs, p′0, p′1 ≤ ps

and A′
0, A

′
1 ⊆ ρ′ in K so that p′i 
P “ Ṁ ∩ ρ′ = A′

i ” and A′
0 6= A′

1. Take n < ω with
ρ′ ≤ χn. For both i = 0, 1, let ρs_i be the least ρ ∈ K∩ν with χn < ρ. Moreover, in
K, by (iv), take ps_i ≤ p′i and As_i ⊆ ρs_i such that ps_i 
P “ Ṁ∩ρs_i = As_i ”.

Note that As_0 ∩ χn 6= As_1 ∩ χn and χn ∈ As_0 ∩ As_1 by Claim. For
both i = 0, 1, let ιs_i be the least ι ∈ As_0 ∩ As_1 with As_0 ∩ ι 6= As_1 ∩ ι.
Moreover, let δs_i := sup(As_i ∩ ιs_i). Here note that if we let Ni be the smallest
ω-closed elementary submodel of 〈HV

λ ,∈, F 〉 such that As_i ⊆ Ni and Ni ∩ λ is
ω-closed, then As_i = Ni ∩ ρs_i by (iii) above, Fact 3.1 (3) and the fact that
ps_i 
P “ Ṁ ∩ ρs_i = As_i ”. So ιs_i is regular and δs_0 6= δs_1 by Lemma
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6.6. Then, it is easy to check that ιs_i, δs_i, ps_i, ρs_i and As_i satisfies all the
requirements.

We have taken ιs, δs, ps, ρs and As for all s ∈ <ω2. Note that 〈〈ιs, δs〉 | s ∈ <ω2〉
satisfies the assumption of Lemma 6.7. Thus there is b ∈ ω2 such that g 6=∗ fα �J

for any α < χ+, where J = {ιb�n | n < ω}, and g ∈ ΠJ is such that g(ιb�n) = δb�n.
Let B :=

⋃
n<ω Ab�n. Moreover, by the <µ-closure of P, take q ∈ P with q ≤ pb�n

for all n < ω.
Then, q forces that Ṁ ∩ χ = B by (vii). Moreover, chJB = g by (viii). So q

forces that there is no α < χ+ with chJ
Ṁ

=∗ fα � J . On the other hand, q forces
that χ = supB ∈ Ṁ by Fact 3.1 (3) and (iii) above, and so 〈fα | α < χ+〉 ∈ Ṁ .
Moreover, since J is a countable subset of B, p forces that J ∈ Ṁ by Lemma 6.5.
So p forces that 〈fα �J | α < χ+〉 ∈ Ṁ . Note also that 〈fα �J | α < χ+〉 remains to
be a µ-continuous scale in V P by Lemma 3.7 (2). So, by Lemma 3.6, q forces that
there is α < χ+ with chJ

Ṁ
=∗ fα �J . This is a contradiction. �

This completes the proof of Theorem 6.1.

7. SR∗
κ � IA>ω and SCH

In this section, we show that SR∗
κ � IA>ω does not implies SCH above κ. For this,

we prove that a Prikry forcing above κ preserves SR∗
κ � IA>ω.

For a measurable cardinal ν and a normal ultrafilter U over ν, let P(U) be the
Prikry forcing with respect to U , that is,

• P(U) consists of all pairs (s,A) such that s ∈ <ων, s is strictly increasing
and A ∈ U ,

• (t, B) ≤ (s,A) in P(U) if t ⊇ s, B ⊆ A, and t(n) ∈ A for any n ∈
dom(t) \ dom(s).

Recall that a forcing by P(U) adds no new bounded subsets of ν, preserves all
cardinals and makes ν to be a singular strong limit cardinal of cofinality ω. See
Jech [10, Chapter 21] for example.

We prove the following:

Theorem 7.1. Suppose κ is a regular cardinal > ω1, 2µ < κ for all cardinal µ

with µ+ < κ, and κ ∈ I[κ]. Let ν be a measurable cardinal > κ and U be a normal
measure over ν. Suppose G is a P(U)-generic filter over V . If SR∗

κ � IA>ω holds in
V , then so is in V [G].

Corollary 7.2. Assume GCH. Let κ be a regular cardinal ≥ ω2, and there are two
supercompact cardinals > κ. Then there is a forcing extension V ∗ of V in which
the following holds.

(i) All regular cardinals ≤ κ in V remain regular.
(ii) SR∗

κ � IA>ω holds but SCH fails above κ.
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Proof of Corollary 7.2 from Theorem 7.1. Let τ and ν be supercompact cardinals
with κ < τ < ν.

We can take a <κ-Baire forcing extension V ′ of V in which the following hold.

(iii) κ ∈ I[κ].
(iv) τ is supercompact.
(v) ν is measurable, and 2ν > ν+.

For this, first make τ a Laver indestructible supercompact cardinal by a <κ-closed
forcing of cardinality τ , next blow up 2ν with preserving the measurability of ν by
<τ -directed closed forcing, and finally force κ ∈ I[κ] by Iκ.

Next, let V ′′ be a forcing extension of V ′ by Col(κ,< τ). In V ′′, (iii), (v) and
SR∗

κ � IA>ω holds. It also holds in V ′′ that 2µ < κ for all µ with µ+ < κ since
this holds in V , and V ′′ is a < κ-Baire forcing extension of V . Finally, let V ∗

be a forcing extension of V ′ by P(U) for some normal ultrafilter U over ν. Then
SR∗

κ � IA>ω holds in V ∗ by Theorem 7.1. Moreover, in V ∗, (i) holds, but SCH fails
at ν. Thus V ∗ is as desired. �

Below, we prove Theorem 7.1. We use the following well-known fact.

Lemma 7.3. In V , suppose U is a normal ultrafilter over a measurable cardinal ν
and ζ is a regular uncountable cardinal < ν. Suppose G is a P(U)-generic filter over
V and f ∈ ζV ∩ V [G]. Then, there is an unbounded D ⊆ ζ such that f �D ∈ V .

Proof. It suffices to prove that the following (∗) holds in V :

(∗) Suppose ḟ is a P(U)-name, and (s,A) ∈ P(U) forces ḟ ∈ ζV . Then there are
(t, B) ≤ (s,A) and an unbounded D ⊆ ζ such that (t, B) forces ḟ �D ∈ V .

Take a P(U)-generic filter G′ over V which contains (s,A). In V [G′], for each
ξ < ζ, take (tξ, Cξ) ∈ G′ below (s,A) which decides ḟ(ξ). Then, since ζ is regular
uncountable in V [G′], we can take t with E := {ξ < ω1 | tξ = t} unbounded in ζ.

In V , let D be the set of all ξ < ζ for which there are aξ and Bξ ∈ U such that
Bξ ⊆ A and (t, Bξ) 
P(U) “ ḟ(ξ) = aξ ”. Note that E ⊆ D. So D is unbounded in
ζ. In V , let B :=

⋂
ξ∈D Bξ ∈ U and g be a function on D such that g(ξ) = aξ.

Then (t, B) ≤ (s,A), and (t, B) forces that ḟ �D = g ∈ V . �

The next lemma is a key for Theorem 7.1.

Lemma 7.4. Let κ and λ be regular uncountable cardinals such that κ < λ, κ ∈ I[κ]

and 2µ < κ for all cardinals µ with µ+ < κ. Suppose ν is a measurable cardinal
with κ < ν < 2ν < λ and U is a normal ultrafilter over ν. Suppose (s,A) ∈ P(U)

and Ẋ is a P(U)-name for a stationary subset of Pκ(HV P(U)

λ ) ∩ IA>ω. Let Y be
the set of all N ∈ Pκ(HV

λ ) ∩ IA>ω such that (t, B) 
P(U) “N [Ġ] ∈ Ẋ ” for some
(t, B) ≤ (s,A) with t ∈ N . Then Y is stationary in Pκ(HV

λ ).
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Proof. In V , take an arbitrary F : <ωHV
λ → HV

λ . We will find N ∈ Y such that
N ∩ κ ∈ κ and N is closed under F .

In V , take a well-ordering ∆ of HV
λ , and let N := 〈HV

λ ,∈,∆, κ, F 〉. Take a
P(U)-generic filter G over V with (s,A) ∈ G. Below, we basically work in V [G].

Let θ be a regular cardinal > 2λ, and let M̄ := 〈HV [G]
θ ,∈,N , λ, ν, U,G〉. Let

X := ẊG. Since X is stationary, we can take M̄ ≺ M̄ such that M̄ ∩ κ ∈ κ and
M := M̄ ∩ HV [G]

λ ∈ X. Note that κ ∈ I[κ] in V [G]. So M is i.a. of length ζ for
some regular uncountable cardinal ζ < κ by Lemma 3.3. Let 〈Mξ | ξ < ζ〉 be an
i.a. sequence to M .

Note that for each ξ < ζ, we can take Kξ ∈ Pκ(HV
λ )

V such that Kξ[G] = Mξ: Let
µ := |Mξ|V [G] < κ, and take a P(U)-name Ṁξ of Mξ. Then, there is p ∈ G which
forces that |Ṁξ| = µ and Ṁξ ⊆ Hλ. Then, in V , we can take a sequence 〈ȧα | α < µ〉
of P(U)-names such that ȧα ∈ HV

λ for all α < µ and p 
 “ Ṁξ = {ȧα | α < µ} ”.
Let Kξ := {ȧα | α < µ}.

For each ξ < ζ, let Kξ be the ∆-least such one. Note that 〈Kξ | ξ < ζ ′〉 belongs
to M̄ for each ζ ′ < ζ since 〈Kξ | ξ < ζ ′〉 is definable in M̄ from a parameter
〈Mξ | ξ < ζ ′〉 ∈ M̄ .

By Lemma 7.3, we can take an unbounded D ⊆ ζ such that 〈Kξ | ξ ∈ D〉 ∈ V .
Here note also that P(ζ ′) ⊆ M̄ since P(ζ ′) ∈ M̄ , |P(ζ ′)| < κ by the assumption of
the lemma, and M̄ ∩ κ ∈ κ. So 〈Kξ | ξ ∈ D ∩ ζ ′〉 ∈ M̄ for all ζ ′ < ζ.

Note that 〈sup(Mξ∩κ) | ξ < ζ〉 ∈ V since P(κ)V = P(κ)V [G]. In V , by recursion
on ξ < ζ, let N ′

ξ be the ∆-least element of Pκ(HV
λ ) such that

(i) N ′
ξ ≺ N ,

(ii) N ′
ξ ∩ κ ∈ κ, and sup(Mξ ∩ κ) ≤ N ′

ξ ∩ κ,
(iii)

⋃
η<ξ N

′
η ⊆ N ′

ξ, and 〈N ′
η | η < ξ〉 ∈ N ′

ξ.
(iv) Kξ ⊆ N ′

ξ if ξ ∈ D.
Let N ′ :=

⋃
ξ<ζ N

′
ξ ∈ V . Then N ′ ∈ Pκ(HV

λ ) in V . Moreover, 〈N ′
ξ | ξ < ζ〉 is an

i.a. sequence to N ′. So N ′ ∈ IA>ω in V .
Note also that N ′[G] = M : By (iv) and the unboundedness of D in ζ, we have

N ′[G] ⊇
⋃

ξ∈D Kξ[G] =
⋃

ξ∈D Mξ = M . For the revserse inclusion, note that
N ′

ξ ∈ M̄ for each ξ < ζ since N ′
ξ is definable in M̄ from parameters 〈Mη | η ≤

ξ〉, 〈Kη | η ∈ D ∩ ξ + 1〉 ∈ M̄ . Then, N ′
ξ ⊆ M̄ for all ξ < ζ since |N ′

ξ| < κ and
M̄ ∩ κ ∈ κ. So N ′ =

⋃
ξ<ζ N

′
ξ ⊆ M̄ . Then N ′[G] ⊆ M̄ since M̄ ≺ M̄. Hence

N ′[G] ⊆ M̄ ∩HV [G]
λ = M .

Recall that M ∈ X = ẊG and M ≺ 〈HV [G]
λ ,∈,HV

λ ,∆, κ, F, ν, U,G〉. Then, since
N ′[G] = M , we can take (t, B) ∈ G such that

(v) (t, B) 
P(U) “N ′[Ġ] ∈ Ẋ ”,
(vi) (t, B) 
P(U) “N ′[Ġ] ≺ 〈HV [Ġ]

λ ,∈,HV
λ ,∆, κ, F, ν, U,G〉 ”.

We may assume (t, B) ≤ (s,A) since (s,A) ∈ G. In V , let N := SkN (N ′ ∪ {t}) ∈
Pκ(HV

λ ). We show that N is as desired.
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First, N is closed under F since N ≺ N . Next, we check that N∩κ ∈ κ. For this,
note that N ′ ⊆ N ⊆ M , where the latter inclusion is because N ′∪{t} ⊆ N ′[G] = M

since (t, B) ∈ G, and M ∩ HV
λ ≺ N . Moreover, N ′ ∩ κ ⊇ M ∩ κ by (ii). Hence

N ∩ κ = M ∩ κ ∈ κ.
We must show that N ∈ Y . Below, we work in V . First, we show that N ∈ IA>ω.

Note that N = {f(t) | f : <ωκ → HV
λ , f ∈ N ′} since t ∈ <ωκ ∈ N ≺ N . For each

ξ < ζ, let Nξ := {f(t) | f : <ωκ → HV
λ , f ∈ N ′

ξ}. Here recall that 〈N ′
ξ | ξ < ζ〉 is an

i.a. sequence to N ′. Then it is easy to check that 〈Nξ | ξ < ζ〉 is an i.a. sequence
to N . So N ∈ IA>ω.

Next, we prove that (t, B) 
P(U) “N [Ġ] ∈ Ẋ ”. This implies that N ∈ Y since
t ∈ N and (t, B) ≤ (s,A). First, note that (t, B) 
P(U) “t ∈ N ′[Ġ] ”. Then, from
(vi), it easily follows that (t, B) 
P(U) “N [Ġ] = N ′[Ġ] ”. Hence (t, B) forces that
N [Ġ] ∈ Ẋ by (v). �

Now, we prove Theorem 7.1.

Proof of Theorem 7.1. Assume SR∗
κ � IA>ω holds in V . We show that SR∗

κ � IA>ω

holds also in V P(U). Let Ġ be the canonical P(U)-name for a P(U)-generic filter.
For a while, we work in V . Suppose λ is a regular cardinal > 2ν , (s,A) ∈ P(U)

and Ẋ is a P(U)-name for a stationary subset of Pκ(HV [Ġ]
λ ) ∩ IA>ω. It suffices to

find (t, B) ≤ (s,A) and a P(U)-name Ṙ for a subset of HV [Ġ]
λ such that (t, B) forces

that |Ṙ| = κ ⊆ Ṙ, Ṙ is i.a. of length κ, and Ẋ ∩ Pκ(Ṙ) is stationary.
Let Y ′ be the set of all N ∈ Pκ(HV

λ )∩ IA>ω such that N ≺ 〈HV
λ ,∈, κ, ν, U〉 and

(tN , BN ) 
P(U) “N [Ġ] ∈ Ẋ ” for some (tN , BN ) ≤ (s,A) with tN ∈ N . Then Y ′ is
stationary by Lemma 7.4. By the Pressing Down Lemma, we can take t such that
Y := {N ∈ Y ′ | tN = t} is stationary.

By SR∗
κ � IA>ω, we can take Q ⊆ HV

λ such that |Q| = κ ⊆ Q, Q is i.a. of length
κ and Y ∩ Pκ(Q) is stationary. Let Ṙ be a P(U)-name for Q[Ġ], and let

B :=
⋂

{BN | N ∈ Y ∩ Pκ(Q)} .

Note that B ∈ U since |Y ∩ Pκ(Q)| < ν. So (t, B) ∈ P(U).
We show that (t, B) and Ṙ are as desired. Take a P(U)-generic filter G over V

which contains (t, B). Let R := ṘG = Q[G] and X := ẊG. Working in V [G], we
check that |R| = κ ⊆ R, R is i.a. of length κ and X ∩ Pκ(R) is stationary.

First note that Q ≺ 〈HV
λ ,∈, κ, ν, U〉 since N ≺ 〈HV

λ ,∈, κ, ν, U〉 for all N ∈ Y ,
and Y ∩ Pκ(Q) is stationary. So Q ⊆ Q[G] = R ≺ 〈HV [G]

λ ,∈, κ, ν, U,G〉. Then,
|R| = κ ⊆ R. Moreover, taking an i.a. sequence 〈Qξ | ξ < κ〉 to Q in V , it is
easy to see that 〈Qξ[G] | ξ < κ〉 is an i.a. sequence to R = Q[G]. Finally, we
prove that X ∩ Pκ(R) is stationary. For this, note that Y ∩ Pκ(Q) is staitonary in
V [G] since so is in V , and |Q| = κ < ν. Take an ⊆-increasing continuous cofinal
sequence 〈Q′

ξ | ξ < κ〉 in Pκ(Q). Then S := {ξ < κ | Q′
ξ ∈ Y } is stationary. Note
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that 〈Q′
ξ[G] | ξ < κ〉 is ⊆-increasing continuous and cofinal in Pκ(R). Moreover,

Q′
ξ[G] ∈ X for all ξ ∈ S. So X ∩ Pκ(R) is stationary. �

We end this section with a question. Note that in our proof of Corollary 7.2,
SCH fails at a singular cardinal of cofinality ω in V ∗. So the following question
naturally arises.

Question 7.5. Does SR∗
κ � IA>ω imply that SCH holds at singular cardinals of

cofinality > ω above κ?
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