GENERALIZED STATIONARY REFLECTION
AND CARDINAL ARITHMETIC

HIROSHI SAKAI

ABSTRACT. The reflection of stationary subsets of P, (H) for all sets H D wr,
which we denote by SR.;, is known to imply that A“ = X for all regular car-
dinal A > wgy. In particular, it implies 2 < wg and the Singular Cardinal
Hypothesis. For a regular cardinal kK > wa, the reflection of stationary sub-
sets of Pw(H) for all H D k is inconsistent with ZFC. But its restriction to
stationary sets consisting of internally approachable sets, which we denote by
SR, | IA, is consistent with ZFC. In this paper, we study consequences of
SRy |TA on cardinal arithmetic.

We prove that SR, [ IA does not give any bound on 2%1!, while it implies
A¥ = X for all regular cardinal A\ > xt. We also prove that SR, [ IAs,,
does not give any bound on 2* and does not imply the Singular Cardinal
Hypothesis, where SR, [ IAs, denotes the reflection of stationary subsets of

Px(H) consisting of internally approachable sets of uncountable cofinalities.

1. INTRODUCTION

So far, the reflection of stationary subsets of P, (H) for H O w; has been
extensively studied by many set theorists. First, we recall this.

For a set H 2 wy, let SR, (H) be the following stationary reflection principle:

Foe every stationary X C P, (H), there is R C H such that |R| =
w1 € R and X NP, (R) is stationary in P, (R).

Let SR,,, be the assertion that SR, (H) holds for every set H 2 wy. SRy, is often
called the Weak Reflection Principle.

Foreman-Magidor-Shelah [7] proved that SR, follows from Martin’s Maximum
(MM). Moreover, many interesting consequences of MM follows from SR. For
example, SR,,, implies that NS,,, is presaturated ([7]), Chang’s Conjecture holds
(7)), 2¥ < we (Todorcevi¢) and the Singular Cardinal Hypothesis (SCH) holds
(Shelah [18]). By the latter two consequences, A = X for all regular cardinal
A > wy under SR, .

In this paper, we study consequences of generalization of SR,,, on cardinal arith-

metic.
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Recall that the following straightforward generalization of SR, is inconsistent
with ZFC. For a regular uncountable cardinal x and a set H D &, let SR, (H) be

the following statement:

Foe every stationary X C P,.(H), there is R C H such that |R| =
k C R and X NP, (R) is stationary in P, (R).

Let SR, be the assertion that SR, (H) holds for every set H O k. Feng-Magidor
[4] and Foreman-Magidor [6] proved that SRy, fails for any regular cardinal x > ws.
Also, Shelah-Shioya [19] proved that SR, (k™) fails.

On the other hand, it was proved in [7] that the restriction of SR, to station-
ary sets consisting of internally approachable sets is consistent. Let us recall this
restriction of SR.

Let IA be the class of all internally approachable (i.a. for short) sets. (See §3
for the definition of internally approachability.) Suppose k is a regular uncountable
cardinal, and C is a subclass of IA. For a regular carddinal A\ > k, let SR, (H,) [C

be the following statement:

For every stationary X C P, (Hx) N C, there is R C H) such that
|R| = k C R and X NP, (R) is stationary in P, (R).

Also, let SR”.(H,) | C be the statement obtained from SR, (H,) [ C by requiring R
to be i.a. of length x in addition. Let SR, [C (SR [C resp.) be the assertion that
SR, (HA) IC (SRL(H,) [ C resp.) holds for every regular A > .

It is not hard to see that SR,,, [TA is equivalent to SR,,,. (See §3.) So SR, [TA
can be seen as a natural generalization of SR,,,. In [6], it was proved that for any
regular uncountable cardinal «, if a supercompact cardinal > k is Lévy collapsed
to kT, then SR, | IA holds. In fact, k™ is generically supercompact with respect to
< k-closed forcings in this model, and this generic supercompactness of k™ implies
SR [TA. (See §4.)

We study consequences of SR, [ TA on cardinal arithmetic. We also discuss
SR, | C for C =1A,,IA~, where IA, and IA- ., denote the class of all i.a. sets of
cofinality w and of cofinality > w, respectively. (See §3 for the definitions of IA,,
and IA-,.)

First, in §4, we show that the generic supercompactness of x* with respect to
< k-closed forcings does not give any bound on 2* for a regular u > « (Proposition
4.3). So we have the following.

(I) SR [TA does not give any bound on 2* for a regular p > k.

In §4, we also prove that if T is generically supercompact with respect to < x-
closed forcings, then A< = X for every regular A > k. In particular, this generic
supercompactness of k1 implies that 2<* = x and SCH holds above k.

Next, in §5, we prove the following. (Theorem 5.1)
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(IT) SR, [TA,, implies that A¥ = X for all regular cardinal A > x. In particular,
it implies that 2¥ < k™ and SCH holds above .

This can be proved by a straightforward generalization of the proof of the fact that
A¥ = A for all regular A > wy under SR, .

Since the generic supercompactness of kT with respect to < x-closed forcings
imply that 2<% = k, it is natural to ask whether SR, | IA gives any bound on 2#
for an uncountable regular p < k. In §6, we give a negative answer to this question
(Corollary 6.2 (2)).

(IIT) For any regular uncountable cardinal p < s, SR’ | TA does not give any
bound on 2#.

In fact, we will prove that, under some mild assumption, SRX [ TA is preserved by
Add(u, p) for any regular uncountable p < k and any ordinal p, where Add(u, p)
denotes the forcing adding p-many subsets of u (Theorem 6.1 (2)). (See §2 for
Add(u, p).)

Another natural question arising from (II) is whether SR, [TAs,, has any con-
sequences on cardinal arithmetic. Does it give any bound on 2% or imply SCH? In
§6 and §7, we also give the following negative answer to this question. (Corollary
6.2 (1) and 7.2).

Ia I > oes IlOt gl\/e aIly ouna on 2 .
IV S K r A ¢ d b d
\Y SR I oes not 1m S/ II a/l)o\/e K.

For (IV), we prove that, under some mild assumption, SR} | TA-, is preserved
by Add(w, p) for any ordinal p (Theorem 6.1 (1)). For (V), we prove that, under
another mild assumption, SR}, [ TA~,, is preserved by the Prikry forcing above
(Theorem 7.1).

To prove Theorem 6.1, we show that the class of internally approachable sets
have some rigidity under forcings (Proposition 6.3). This may be of independent
interest.

Prior to prove the above mentioned results, we present our notation and basic

facts in Set Theory in §2 and basics on internally approachable sets in §3.

2. PRELIMINARIES

In this section, we present our notation and basic facts in Set Theory.

First, we give miscellaneous notation.

For a set A of ordinals, we let cf(A) denote the cofinality of (A, <), that is, the
smallest order-type of a cofinal subset in (A, <). For a regular cardinal p, Cf(u)
denotes the class of all limit ordinals of cofinality u.

Let A be a set of ordinals. For a regular cardinal p, we say that A is u-closed
if sup(B) € A for any B C A of order-type pu. For a cardinal v, we say that A
is < v-closed if A is p-closed for all regular p < v. For o € A which is not the
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largest element of A, let suca(«) denote the successor of v in A, i.e. suca(a) =
min(A\ («+1)).

Suppose M is a structure in which a well-ordering of its universe is definable.
Then, for a subset A of the universe of M, we let Sk’'(A) denote the Skolem hull
of A in M, i.e. the smallest M < M with A C M.

Next, we give our notation and basic facts on P, (H).

Let x be a regular uncountable cardinal and H be a set with |H| > k. Then
P.(H) is the set of all x C H of cardinality < x. In this paper, we adopt Jech’s
notion of club and stationary subsets of P, (H). That is, Z C P, (H) is club in
Pu(H) if Z is C-cofinal in Py (H), and [, x¢ € Z whenever (z¢ [ { < p) is a
C-increasing sequence of elements of Z of length u < k. X C P, (H) is said to be
stationary if X N Z # () for any club Z C P, (H).

We will use the following fact without any reference.

Fact 2.1 ((1) Kueker [12], (3) Menas [14]). Let k be a regular uncountable cardinal,
H be a set with k C H and X be a subset of P, (H).

(1) X is stationary in P.(H) if and only if for any function f : <“H — H
there is © € X such that x Nk € Kk and x is closed under f, i.e. f(a) € x
for all a € <¥zx.

(2) Suppose H' O H. Then X C P.(H) is stationary in P.,(H) if and only if
the set {z' € P,(H') | ' N H € X} is stationary in P.(H').

From (2) of the above fact, we have the following.
Lemma 2.2. Suppose wy C H C H' and SRy, (H') holds. Then SR, (H) holds.

Proof. Suppose X is a stationary subset of P, (H). We find R C H such that
|R| = w1 € R and X NP, (R) is stationary.

Let X' := {2’ € P,,(H') | ¥’ "H € X}. Then X’ is stationary in P, (H')
by Fact 2.1 (2). By SRy, (H’), there is R C H’ such that |R'| C w; C R’ and
X'NP,, (R) is stationary. Let R:= R' N H. Then, |R| =w; C R. Note also that

X' NP, (R) = {2/ eP,(R)|2’NReXNP, (R)}.

Then, since X' NP, (R') is stationary, X NP, (R) is stationary again by Fact 2.1
(2). Thus R witnesses SRy, (H) for X. O

Next, we give our notation and basic facts on forcing.

Let P be a poset, and suppose G is a P-generic filter over V. For a P-name a,
let @© denote the evaluation of @ by G. For a set M C V, we let M[G] be the set
{a%|aeVPn M}.

Let P be a poset and p be a regular uncountable cardinal. We say that P has the
< p-c.c. if P has no antichain of cardinality p. P is said to be < pu-closed if every
descending sequence in P of length < p has a lower bound in P. We say that P is
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< p~directed closed if every downward directed subset of P of cardinality < u has a
lower bound in P. P is said to be < pu-Baire if (D is dense in P for any family D
of dense open subsets of PP with |D| < u. Note that if P is < u-Baire, then forcing
extensions by P do not add new sequences of ordinals of length < p.

We will also use the approximation property introduced by Hamkins [8]. We say
that P has the < u-approximation property if it satisfies the following:

For any P-generic filter G over V and any A € V[G] with A C V|,
if ANB €V for all B€V with |B|V < u, then A€ V.

We will use the following standard lemma. Note that ¥ may not be club in a

forcing extension of V' by P.

Lemma 2.3. Suppose k is a reqular uncountable cardinal and k C H. Let P be
a poset with the < k-c.c. and Z be a P-name such that vy “Z is club in P.(H)”.
Then, in V,Y = {y € P.(H) |IFp “y € Z"} is club in Py (H).

Proof. Clearly, Y is closed, that is, Ug <uTe €Y for any C-increasing sequence
(xe | € < ) inY of length p < k. To show that Y is C-cofinal, take an arbitrary
x € P.(H). We find y € Y with z Cy.

By recursion on n < w, take z,, € P,(H) and a P-name Z,, as follows. Let g := .
Suppose that z,, has been taken. First, take a P-name 2, so that I-p “x, C %, € Z 7.
Then, by the <k-c.c. of P, take x,,41 € Px(H) so that IFp “ 2, C 2,11 7.

Let y := U,ep Tn- Clearly © C y. Also, P forces that (2, | n < w) is a C-
increasing sequence in Z and that y = U, <o 2n- Then, it follows from the closure
of Z that IFp “y € Z7. Soy € Y. |

Let u be a regular cardinal and A be a set of ordinals. Then Add(u, A) denotes
the poset of all partial functions p : 4 x A — 2 such that |p| < p. Also, Col(u, A)
denotes the poset of all partial functions p : g x A — sup(A) such that |p| < p and
p(a, B) € B for all (o, B) € u x A. Both Add(u, A) and Col(u, A) are ordered by
reverse inclusions. Thus, both of them are < u-closed.

Recall that Add(u,v) has the < (2<#)T-c.c. A forcing by Add(u, A) adds generic
subsets of u indexed by elements of A, and a forcing by Col(u, A) adds a surjection
from p to S for each 5 € A. According to the custom, for a cardinal v > u, we
denote Col(y,v) as Col(p, < v). Recall that if v is inaccessible, then Col(u, < v)
has the <v-c.c., and v = pV in its forcing extensions.

We will use the following fact by Mitchell [15]. In [15], it is proved in some
general settings. Here we give a direct proof.

Fact 2.4 (Mitchell [15]). Let u be a regular cardinal and p be an ordinal. Then
Add(u, p) has the < (2<F)T -approzimation property.
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Proof. We work in V. Let v := 2<#. For a contradiction, assume Add(u, p) does
not have the < vT-approximation property. Then, we can take p € Add(u, p) and
a Add(u, p)-name A with the following properties.

(i) P IFadd(up) A CVAAgV.

(ii) p IFAdd(u,p) “ANB €V for any B € V with |IBlY <v”.

Let 6 be a sufficiently large regular cardinal. Then we can take M < (Hy, €)
such that p,p,p,A € M, |[M| = v and <*M C M. By (ii) we can take p* < p
and A* C M such that p* IFaqau,p) “ANM = A*”. Let ¢* := p* N M. Then
q* € Add(u, p) N M since <*M C M. Note also that ¢* < p.

By (i) and the elementarity of M, in M, we can take a and qo,¢q1 < ¢* such that
qo Fadd(u,p) “a ¢ A” and @1 Fadaqu,p) “a € A”. Note that both qo and ¢q; are
compatible with p* since qo,q1 € M and qo,q1 < ¢* =p*N M. If a € A*, then this
contradicts that gp and p* are compatible, and if a ¢ A*, then this contradicts that
¢q1 and p* are compatible. ([

3. INTERNALLY APPROACHABLE SETS

In this section, we briefly review basics on internally approachable sets.

For a limit ordinal ¢, a set M is called internally approachable (i.a. for short) of
length ¢ if there is a C-increasing sequence (M | £ < ¢) such that

° U5 <¢ My =M,
o (M| &< (¢')e M forall ¢! <(.
A sequence (M | £ < () as above is called an 4.a. sequence to M.

Let M be a set. We say that M i.a. if M is i.a. of length { for some limit ordinal
(. M is said to be i.a. of reqular length if M is i.a. of length u for some regular
cardinal p. For a regular cardinal p, we say that M is i.a. of cofinality u (> p,
<, respectively) if M is i.a. of length ¢ for some limit ordinal ¢ of cofinality p
(> p, < u, respectively).

Let IA denote the class of all i.a. sets. Let IA, (IAs,, IA.,, respectively) be
the class of all sets which are i.a. of cofinality p (> u, < p, respectively).

Note that if M is countable and M < (H,, €) for some regular uncountable
cardinal A, then M is i.a. of length w. (Take an enumeration (a, | n < w) of M,
and let M, = {an, | m < n} for n < w. Then (M, | n < w) is an i.a. sequence
to M.) Thus, for any regular uncountable cardinal A, P, (Hx) NTA is club in
P, (Hy), and so SR, (H,) is equivalent to SRy, (Hx) [TA. Thus SR, is equivalent
to SRy, [TA by Lemma 2.2.

The following are basic facts on i.a. sets. The proofs of (1) and (2) are found
in [7, Lemma 28], and those of (3) and (4) are found in [3, Lemma 2.3] and [6,

Proposition 2.4], respectively.

Fact 3.1. Let pu, k, X and X' be reqular cardinals with p < x < X < X.
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(1) Pu(Ha) NIA, is stationary in P.(Hy).

(2) Ewvery stationary X C P.(Hx) NIA remains stationary in any < k-closed
forcing extension.

(3) Suppose M € 1A, and M < (Hx,€). Then M N X is v-closed for every
reqular cardinal v < p, and cf(M Nv) = p for any reqular cardinal v € M
with v > p and for v = \.

(4) For any X C Pu(Hr) NIA, X is stationary in P(Ha) if and only if the
set {M' € P.(Hx)NIA | M' NHy € X} is stationary in P.(Hy).

Using Fact 3.1, the same argument as Lemma 2.2 yields the following.

Lemma 3.2. Let p and k be reqular cardinals with p < k, and suppose C is TA,
IA,, IA., orIA.,. Assume that A and X are regular cardinals with k < A < X
and that SR, (H ) [ C holds. Then, SR.(Hx) [C holds.

Proof. Take an arbitrary stationary X C P.(Hx) N C. We find R C H, such that
|R| = k € R and X NP, (R) is stationary.

Let X' be the set of all M’ € P, (Ha ) NIA such that A € M’ < (Hy, €) and
M’ NHy € X. Then X’ is stationary in P,(H,) by Fact 3.1 (4).

We claim that X’ C C. This is clear if C' = IA. Suppose C is IA.,, IA, or
IA.,. Take an arbitrary M’ € X'. Let M := M'NHy. Then M € X C C.
Let v be a regular cardinal with M € IA,. Note that v > pu, v = p, or v < p
itC =1A,,, C =1IA,, or C =1IA,,, respectively. Note also that M < (H,, €).
So cf(M'NA) = cf(M NA) = v by Fact 3.1 (3). Then, since M’ € IA and
A€ M’ < (Hy, €), we have that M’ € TA, again by Fact 3.1 (3). So M’ € C.

By SR.(Hx) | C, there is R’ C H, such that |R'| = x C R and X' NP, (R)
is stationary. Let R := R’ N H,. Clearly, |[R| = x C R. Note also that the set
Y :={M € P.(R)| M'NR € XNP.(R)} includes X' NP, (R'), and so Y’ is
stationary in P.(R'). Then, X N P.(R) is stationary in P,(R) by Fact 2.1 (2).
Therefore R is as desired. O

The notion of i.a. is closely related to Shelah’s approachability ideal I[«]. For a
regular uncountable cardinal k, let I[«] be the set of all S C k with the following
property.

There are a sequence (b, | @ < k) of bounded subsets of x and a
club C' C & such that for any limit ordinal v € SN C there is b C
of order-type cf(y) with bN g8 € {by | @ <~} for all 5 < +.

We will use the following folklore.

Lemma 3.3. Let k and A be regular cardinals with w1 < k < A, and suppose
k € I[k]. Then, there is a club Z C Py(Hx) such that every M € Z N1A is i.a. of
regular length.
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Proof. Take a pair b = (by | @ < k) and C C r witnessing that « € I[x]. Let
M = (Hy, €, k,b,C), and let Z be the set of all M € P,.(H,) such that M < M
and M Nk € k. Then, Z is club in P,.(H). We claim that Z witnesses the lemma.

Suppose M € Z NIA. Take an i.a. sequence (M | £ < () to M. Let p := cf(().
We show that M is i.a. of length p. Let v := M Nk and 7¢ := sup(M¢ N &) for
each & < ¢. Then, (7¢ | £ < {) is an increasing cofinal sequence in v, and so
cf(y) = cf(¢) = p. Note also that v € C since M < M.

Since b and C' witnesses that x € I[k], we can take a cofinal b C v of order-type
all of whose proper initial segments are in {b, | @ < v}. Note that {b, |« <~} C M
since v € M < M. So all proper initial segments of b are in M. Let (8, | n < u)
be the increasing enumeration of b, and for each n < u let &, be the least £ < ¢
with 8, < 7¢. Then, (§, | n < p) is increasing and cofinal in ¢. In particular,
<M§n n<p
segments of (M, | n < p) are in M, since they are definable from proper initial
segments of b and (M¢ | £ < (), which are in M. So (M, | n < p) is an i.a. sequence
to M, and M is i.a. of length pu. O

n < p) is C-increasing, and |J M, = M. Moreover, all proper initial

Suppose k is a regular uncountable cardinal. The assertion that x € I[x] is known
to be easily forced by the following poset I, which adds a witness of k € I[k] by
initial segments. Let I,; be the poset of all (s, ¢) such that

(i) cis a closed bounded subset of .
(ii) s is a sequence (b, | @ < max(c)) of bounded subsets of .
(iii) For any limit ordinal y € ¢, there is b C v of order-type cf(v) with bN g €
{bo | @ < v} for all 8 < 7.

(s,c) < (t,d) in I; if s and ¢ are end-extensions of ¢ and d, respectively.
Lemma 3.4. Let k be a reqular uncountable cardinal. Then I, is < k-Baire.

Proof. Suppose (D¢ | £ < p) is a sequence of dense open subsets of I, where y is a
cardinal < k. Take an arbitrary p € I,. We must find p* < p with p* € ﬂg <uDe-

For each limit ordinal ¢ < p, take a cofinal e C ( of order-type cf(¢). By
recursion on § < p, we will take pe = (c¢, s¢) € Ic so that (pe | £ < p) is descending
and pey1 € De. When pe has been taken, we let f¢ := max(c¢) and let s¢ = (by |
a < B¢). First of all, let pg := p.

Suppose £ < p and pe has been taken. We take pey1. First, take p’ = (¢, s') < pe
with p’ € De. Let ' :=max(c/), Ber1 := 5 +p+1and ceqq := ¢ U{Bes1}. Next,
take a sequence (by | ' < a < Be41) of bounded subsets of x such that

(x) {Bylneen(E+1)} €{ba| B << Peyr} forall limit ¢ < p.
Let se41 := 8" U (ba | B’ < @ < Bes1). Finally, let pey1 = (cet1, Se+1). Note that
pey1 € I since p’ € I, and Be41 is a successor ordinal. Note also that per1 < pe
and pe4q € De.
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Next, suppose  is a limit ordinal < p and (p, | n < ) has been taken. Let
Be := sup, ¢ By, e = (Uyce en) U{Bets se = U, <¢ sy and pe 1= (cg, s¢). To see
that pe € L, it suffices to check the property (iii) of conditions of I, for v = .
But, by (*) at successor steps, b = {8, | n € e¢} witnesses this. Note also that
pe < py for all n < &.

Now, we have defined (pe | £ < p). Clearly, p* := p,, is as desired. O

By the previous lemma, I, preserves all cofinalities < k. Moreover, it is easy to
check that for any v < & the set {{(c,s) € I; | ¥ < max(c)} is dense. Then, for an
I.-generic filter G over V, |J{s | 3¢, (¢, s) € G} and |J{c | 3s, (¢, s) € G} witness
that k € I[]. So we have the following.

Lemma 3.5. Let k be a reqular uncountable cardinal. Suppose G is an I, -generic

filter over V. Then k € I[k] in V[G].

Next, we turn our attention to scales in the PCF theory. It is well-known that
i.a. sets have nice properties in connection with scales. See [1], [3] and [17] for
example. Below, we briefly review a very basic one (Lemma 3.6). In this paper, we
only use scales at singular cardinals of cofinality w.

Let v be a singular cardinal of cofinality w and I be a set of regular cardinals
with sup(f) = v. Then, III is the set of all functions f : I — On such that f(¢) <
for all « € I. For f,g € I1I, we write f <* g (f <* g, f =* g, respectively) if there
is § < supI such that f(¢) < g(¢) (f(r) < g(¢), f(¢) = g(¢), respectively) for all
t€TI\J. A scale in IIT is a <*-increasing <*-cofinal sequence of elements of IIT of
length v.

To state the nice property of i.a. sets, we introduce the notion of p-continuity of
scales. Let v and I be as above.

For F C TII with |F| < v, let sup(F) be g € I1I such that g(¢) = sup;cx f(¢)
for « > |F| and g(¢) = 0 for all « < |F|. Suppose 7 is a limit ordinal < vt of

uncountable cofinality. For a sequence (J,, | @ < ) of ordinals, let
CSUP, < O = Min{sup,¢.da | ¢ is a club subset of « of order-type cf(y)} .

For a sequence (f, | a < ) in I/, let csup, .., fo be g € III such that g(:) =
eSup, ., fa(t) for ¢ > cf(y) and g(v) = 0 for ¢ < cf(y).

Note that if (f | @ < ) is <*-increasing, then fz <* csup, . fo for all 8 <~
Assume not. Let f := csup,., fa, and take 3 < v with fz «£* f. Then we can
take a countable unbounded I’ C I such that cf(y) < min(I’) and fg(r) > f(¢) for
all © € I'. For each + € I', take a club ¢, C v with f(1) = sup,¢., fa(t). Then
¢ := Ve ¢ is club in v. Take o € ¢ with 3 < a. Since fz <* f,, we can take
v eI’ with f(t) < fo(t). But fo () < f(¢) since a € ¢ C ¢,. So fz(¢) < f(¢). This
contradicts that ¢ € I'.

For a regular uncountable cardinal p < v, a scale (f, | & < vT) in 1T is said to
be p-continuous if f., = csup, ., fo for all v € vt N CE(p).
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We also use characteristic functions of sets. For a set A with |A| < v, the
characteristic function of A on I, which we denote as ch{4, is the function on [
defined by ch’(¢) := sup(A N¢) for + > |A] and ch’(¢) := 0 for + < |A|. Note that
chly e 1.

La. sets have the following nice property in connection with scales. We give its

proof for the convenience of the readers.

Lemma 3.6 (Shelah [17]). Let v be a singular cardinal of cofinality w and p be a
reqular uncountable cardinal < v. Suppose I is a countable set of reqular cardinals
with sup I = v and f: (fa | @« < V™) is a p-continuous scale in T . Suppose also
that M is an i.a. set of length u, |M| < v and feM=< (Ha, €) for some regular
cardinal A > vT. Then ch}, =* fsup(Mw+)-

Proof. We may assume min [ > p. Let v := sup(M Nv™). Note that cf(y) = p.
For each ¢ € I, let ¢, be a club subset of v of order-type p such that f,(¢) =
SUP,ee, falt). Let c:= ((N,c;c.)N M. Then cis club in v, and f, = sup,¢.. fo. Let
(M | € < p) be an i.a. sequence to M.

First, we prove f, <* chJIw. For each « € ¢, ran(f,) C M since a,fe M, and
dom(fa) = I is countable. Then, it follows that f, = sup,c. fo <* chl,.

Next, we prove chﬂ/[ <* f,. For each £ < p, let g¢ := chJIM{. Note that gc € M.
Then, for each £ < p, there is & € v N M with g¢ <* f, since fe M, and fis
<*-cofinal in III. So g¢ <* f, for all £ < p. For each { < p, let ¢¢ € I be such
that ge(¢) < fy(¢) for all © € I with ¢« > t¢. Then, we can take ¢* € I such that
b:={{ < p| e ="} is unbounded in p, since p is regular uncountable, and I
is countable. Then, supgc, g¢ <* fy. On the other hand, Chfw = SUPg¢p e since
M = e, Me. So chy, <* f,. O

We will also use the following.

Lemma 3.7. Let v be a singular cardinal of cofinality w, I be a set of regular

cardinals with sup(I) = v and p be a regular uncountable cardinal < v.

(1) If 2¥ = v, then there is a p-continuous scale in I11I.
(2) Suppose f = (fo | @ < v is a p-continuous scale in TII. Then f is a

p-continuous scale in I in any < p-closed < p™-c.c. forcing extension.

Proof. (1) Suppose 2 = v*. Then |[I1I| = v*. Let (g, | @ < v) be an enumeration
of III. By induction on o < v take f, € III as follows: If a is a successor ordinal,
then let f, € III be such that fo,_1,94—1 <* fo. Suppose « is a limit ordinal. If
cf(a) = p, then let f, := csupg., fg. Otherwise, take an unbounded b C «a of
order-type cf(a) < v, and let f, := sup{fs | B € b}. Then (fo | @ < vt)isa
p-continuous scale in I17.
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(2) Let V' be a < p~closed < u*-c.c. forcing extension of V. Note that cofinalities
and cardinalities are absolute between V and V’'. We show that f is a p-continuous
scale in IIT in V'. We work in V".

First, we check that f is a scale. It suffices to show that f is <*-cofinal in IIJ.
Take an arbitrary g € III. We find o < v* with g <* f,. Since V' is a < u™-
c.c. forcing extension, there is a function H € V on I such that g(¢v) € H(:) and
|[H())| < pforall e € I. In 'V, define h € I1I as h(t) := sup(H(¢)) for ¢ > p and
h(¢) :=0 for ¢ < p. Then g <* h. Since fis <*-cofinal in I in V, there is o < vT
with h <* f,. Then g <* f,.

Next, we show that f is p-continous in V’. For this, it suffices to prove that if
v € Cf(p), and (0o | @ < ) is a sequence of ordinals which belongs to V, then
CSUD,, <~ Ja is absolute between V' and V'. Let v and (0, | @ < 7) be as above, and
let § and " be csup, ., 0o in V and V', respectively. Clearly, 6’ < 4. On the other
hand, in V’, there is a club ¢’ C v with sup, ¢, 0o = 0’. Then, using the fact that
v € Cf(p) and V' is a < p-closed forcing extension of V, in V' we can easily take a
club ¢ C v of order-type p with sup,¢,dq < 6'. So § < ¢'. O

4. GENERIC SUPERCOMPACTNESS AND SR*

As we mentioned at the introduction, if a supercompact cardinal is Lévy col-
lapsed to k™, then k™ is generically supercompact with respect to < x-closed forc-
ings. Moreover, this generic supercompactness of x* implies SR” | TA. In this
section, we review this and study consequences of generic supercompactness on
cardinal arithmetic. For a systematic and detailed study of generic large cardinals,
see Foreman [5].

First, we recall the notion of generic supercompactness. For classes M, N, a
class function j : M — N and ordinals 7,v with 7 < v, we say that j: M — N a
(1, v)-supercompact embedding if

(i) M and N are transitive models of ZFC.
(ii) j is an elementary embedding with crit(j) = 7, where crit(j) denotes the
critical point of j.

(iii) j(7) > v and j[v] € N.

Recall that 7 is supercompact if there is a (7, v)-supercompact embedding j : V —
M for any v > 7.

For a regular uncountable cardinals x and 7 with x < 7, we say that 7 is
generically supercompact with respect to < k-closed forcings if for any cardinal
v > 1, in some < k-closed forcing extension of V', there is a (7, v)-supercompact
embedding with its domain V.

The following proposition is standard. See Cummings [2, §10] for example. We

will later prove more general fact in Proposition 4.3.
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Proposition 4.1. Let k be a regular cardinal and T be a supercompact cardinal
> k. Suppose G is a Col(k, <T)-generic filter over V.. Then, in V|G|, T = & and

T is generically supercompact with respect to < k-closed forcing.

As we mentioned at the introduction, SR} [TA follows from the generic super-

compactness.

Proposition 4.2. Assume k1 is a generic supercompact cardinal with respect to
< k-closed forcings. Then SR’ [TA holds.

Proof. In V, let A be a regular cardinal > x and X be a stationary subset of
P.(HY) NIA. We show that in V there is R C HY such that |[R| =k C R, R is
i.a. of length x and X NP, (R) is stationary.

Let v := || in V. Then, in some < r-closed forcing extension V' of V, we can
take a ((kT)Y,v)-supercompact embedding j : V — M. Note that j(k) = x. By
the elementarity of j, it suffices to show that in M there is R* C j(HY) such that
|R*| = k C R*, R* is i.a. of length x and j(X) NP, (R*) is stationary.

Let R* := j[HY]. Then it is easy to see that R* € M using the fact that
|HY| = v in V and j[v] € M. We show that R* is as desired. Clearly x C R*.
Moreover, |R*| < k in M since |R*|M <v < j((s1)V) = (x)M.

Note that X remains stationary in P, (HY ) in V’ by Fact 3.1 (2). Then, {j[x] |
x € X} is stationary in P,(R*) in V'. But jlz] = j(z) for all z € X since
lz|V < k < crit(f). So {j[x] |+ € X} = j[X] C 5(X)NP.(R*). Thus j(X)NP.(R*)
is stationary in V’. Then so is in M since M C V.

It remains to show that R* is i.a. of length x in M. Recall that |HY| = & in
M. Take a bijection f : k — HY in M, and for each & < k let Ng’ := f[¢]. Note
that if ¢ < k, then f ¢ € V since V' is a < k-closed forcing extension of V', and
so (N{ | &€ < () € HY. For each § < &, let N := j[N{] = j(N¢) = j(f)[¢]. Note
that (N | £ < k) € M since j(f) € M. Also, U, Ne = j[HY] = R*. Moreover,
for all ¢ < r, (Ng | € < () = j((N{ | € < () € j[HY] = R*. So (N¢ | € < k) is an
i.a. sequence to R* in M. a

In the rest of this section, we study consequences of generic supercompactness
on cardinal arithemetic. The next proposition shows that the generic supercom-
pactness of kT with respect to < k-closed forcings does not give any bound on 2#
for a regular p > k. In particular, by Proposition 4.2, SRY [TA does not give any

bound on 2* for a regular p > k.
Proposition 4.3. Let k be a regular cardinal and T be a supercompact cardinal
> K.

(1) For any p € On, Col(k, <7) * Add(k, p), forces that T is generically super-
compact with respect to < k-closed forcings.
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(2) For any Col(k, <7)-name Q for a <7-directed closed poset, Col(r,<7)*Q
forces that T is generically supercompact with respect to < k-closed forcings.
In particular, for any reqular p > 7 and any p € On, Col(k, <7)*xAdd(y, p)

forces that T is generically supercompact with respect to < k-closed forcings.

Proof. In the proof below, we will deal with several transitive models, but <*On
will be absolute among them. In particular, Col(k, *) and Add(k, *) will be absolute

among them.

(1) Suppose G x H is a Col(k, < 7) x Add(k, p)-generic filter over V. Take an
arbitrary ordinnal v > 7. We will find a < k-closed forcing extension of V[G][H]
in which there is a (7, v)-supercompact embedding with its domain V[G][H]. We
may assume v > |Add(k, p)| in V[G].

In V, take a (7, v)-supercompact embedding j : V' — M. Then,

j(Col(k, <7) x Add(k, p)) = Col(k,<j(7)) x Add(k,7(p))
= Col(k, <7) x Col(k, j(7) \ 7) x Add(k, jlp]) x Add(x,j(p) \ jlp])

Suppose G’ x H' is a Col(k,j(7) \ 7) x Add(k,j(p) \ jlp])-generic filter over
V|G][H]. Then VI[G|[H]|G'|[H'] is a < k-closed forcing extension of V[G][H]. We
show that in V[G][H|[G'|[H'], j : V — M can be extended to an elementary
embedding from V[G][H].

First, note that j [ Add(k,p) : Add(k,p) — Add(k,j[p]) is isomorphic and
j IAdd(k,p) € M. Then, G x j[H] is Col(k, < 7) x Add(k, j[p])-generic over M,
and G’ x H' is Col(k, j(7) \ 7) x Add(k, j(p) \ j[p])-generic over M[G][j[H]].

Let G be the Col(k, < j(7))-generic filter corresponding to G x G’ and H be the

Add(k, j(p))-generic filter corresponding to j[H]| x H'. Then, note that G x H is
j(Col(k, < 7) x Add(k, p))-generic over M, and j[G x H|] C G x H. So, by the
standard argument, j can be extended to an elementary embedding from V[G|[H]
to M[G][H].
(2) Suppose G is a Col(k, < 7)-generic filter over V. Let Q := QF, and suppose
H is a Q-generic filter over V[G]. Take an arbitrary cardinal v > 7. We will find
a < r~closed forcing extension of V[G][H] in which there is a (7, v)- supercompact
embedding with its domain V[G|[H]. We may assume v > |Q| in V[G][H].

In V, take a (7, v)-supercompact embedding j : V.— M. Then, in M,

§(Col(r, <7) Q) = Col(r, <j(r)) * j(Q)

>~ (Col(k, < 7) x Col(k, (1) \ 7)) * j(Q).

Let I be a Col(k, j(7) \ 7)-generic filter over V[G|[H]. Note that in V[G], Q x
Col(k, j(7)\ ) is forcing equivalent to Col(k, j(7)\ 7). Let G’ be a Col(k, j(7)\ 7)-
generic filter over V[G] which corresponds to H x I. Moreover, let G be a Col(x, <
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j(7))-generic filter naturally obtained from G x G’. Note that H € M[G] and V[G]
is a <r-closed forcing extension of V[G][H].
SInce j[G] € G, j : V — M can be extended to an elementary embedding

j : VIG] — MI[G] by the standard argument. Here note that j(Q) is < j(k)-
directed closed in M|[G]. Note also that j{H] € M[G]. Moreover, in M[G], j[H]
is a directed subset of j(Q) of size < v < j(k). So we can take a lower bound ¢*
of j[H]. Let H be a j(Q)-generic filer over V[G] containing ¢*. Then j[H] C H.

So, in V[G][H], j : V[G] = M]|G] can be extended to an elementary embedding

Jj:VIG][H] = M[G][H].
Note also that j(Q) is < k-closed in V[G], since so is in M[G] and <*On is

absolute among V[G], V, M and M[G]. Hence V[G][H] is a < k-closed forcing
extension of V[G][H]. O

The following proposition is essenttially proved in Matsubara [13].

Proposition 4.4. Let xk be a reqular uncountable cardinal, and suppose k™ is
generically supercompact with respect to < k-closed forcings. Then A<" = X\ for

every reqular cardinal X > k. In particular, 2<% = x, and SCH holds above .

Proof. The latter statement clearly follows from the former, For the former, it
suffices to prove the following.

(1) 2<% = k.

(2) For any regular A > &, there is a C-cofinal subset of P,;()) of size A.

Let 7 := s™T.

(1) For a contradiction, assume v := 2<% > k. Then we can take a bijection
fiv— <r2.

By the generic supercompactness of 7, in some < k-closed forcing extension V'
of V, we can define an elementary embedding j from V to a transitive M with
critical point 7. Then j(f) is a bijection from j(v) to (<*2)M. Let A := j(f)(7).
Then A € (<F2)M C (<52)V" = (<#2)V since V' is a < k-closed forcing extension
of V. Then we can take o < v with f(a) = A since f is surjective. Then,
JNHG(@) =3(f(a) =4(A) = A= j3(f)(r). But j(a) # 7 since 7 is the critical
point of j. This contradicts that j(f) is injective.

(2) Suppose A is a regular cardinal > k. Take a partition (S, | @ < A) of AN Cf(w)
into stationary sets. Let X be the set of all z € P, (A) such that cf(z) > w and

x = {a < A| S, Nsup(x) is stationary in sup(x)} .
Note that the mapping = +— sup(z) is an injection from X to A. So |X| < A. We
show that X is C-cofinal in P, (\). Take an arbitrary y € P, (). We show that
there is x € X with D y.

By the generic supercompactness of 7, suppose V' is a < k-closed forcing exten-
sion of V, and j: V — M is a (7, A)-supercompact embedding definable in V'. By
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the elementarity of j, it suffices to show that in M there is z € j(X) with D j(y).
Below, we work in V.

Note that z* := j[A] € M and j[A] € Pj(.)(j(A)) in M. Note also that j(y) =
Jly] C z* since y € Py(A) in V, and k < crit(j). So it suffices to show that
¥ € j(X). Let j((So | @ < A)) = (S, | ¢ < j(N)). We must show that for
o/ < j(N), o € j[A] if and only if S/, Nsup(j[A]) is stationary in M.

First, suppose o’ € j[A]. Take o < X with j(a) = o’. Note that S, remains
stationary in A in V' since V' is a < k-closed forcing extension of V. Note also that
j 1 Cf(w)Y is continuous, that is, j(8) = sup{j(y) | v < B} for any 3 € Cf(w)". So,
J[Sa] is stationary in sup(j[}A]). But

JlSa] € j(Sa) Nsup(jA]) = S5 Nsup(j[A]) -

Thus S/, Nsup(j[A]) is stationary in V', and so is in M since M C V".

Next, suppose o' € j(A) \ j[Al. Let T := Ugic;pn Spr- Then S, NT" = 0 since
(8L, 14" < j(N) is pairwise disjoint. Let C" := j]AN Cf(w)"] € M. Then C" C T’
since AN Cf(w)” = U,y Sa- S0 S, NC’" = 0. Note that C’ is w-club in sup(j[A])
in V’ since j | Cf(w)Y is continuous, and (*On)Y" = (*On)Y. Then so is in M since
M C V'. Since S, C Cf(w)™, it follows that S’, Nsup(j[)\]) is non-stationary. O

5. SR, [TA,, AND \¥

In this section, we prove the following:

Theorem 5.1. Assume K is a reqular uncountable cardinal and SRy [IA,, holds.
Then X\ = X for all regular cardinal A > k.

Theorem 5.1 can be proved by a straightforward generalization of the proof of
the fact that SR, implies A = A for all regular cardinal A > w;. Here we give a

proof for the completeness of this paper. We will prove the following proposition.

Proposition 5.2. Assume k is a reqular uncountable cardinal and SR, [TA,, holds.
Then the following hold.

(1) (xF)* =r".
(2) For any singular cardinal v of cofinality w, if u* < v for all p < v, then
o=t

Using this proposition, Theorem 5.1 can be easily proved by induction on .
Below, we prove Proposition 5.2. Our proofs of (1) and (2) are based on Velicovié
[21] and Sakai [16], respectively.

We will use a game, which is a combination of games introduced in Shelah-Shioya
[19] and Velickovié [20]. Suppose k is a regular uncountable cardinal, ¢ is an ordinal

< K, and M is a countable expansion of a structure (M, €, A), where X is a regular
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cardinal > k and A is a well-ordering of H. Then let O(k, M, §) be the following
two players game of length w:

I H @0, Bo ‘ at, B ‘ az, fo ‘ ‘anaﬁn ‘
HH’VO"Yl"ﬁ"""Vn‘
At the n-th stage, first I chooses «,, 8, with a,, < 8, < A, and then II chooses
Yo With B, < v, < A. If n > 1, then I must choose a,, > 7,. After w stages, let
M :=SkM(S U {ay | n < w}). T wins if MNAC U,y Bn\anand M Nk =4.
Note that I wins if and only if M,, N v, € U,,<,, Bm \ m and M, Nk = § for
all n < w, where M,, = SKM (U {am, | m < n}). T_hus, O(k, M, d) is a closed game
for I, and so it is determined. The following lemma is a key.

Lemma 5.3. Let k be a regular uncountable cardinal. Suppose A is a regular
cardinal > Kk, A is a well-ordering of Hy and M is a countable expansion of
(Ha, €,A). Then, there are club many § < k such that I has a winning strategy for
O(k, M, 9).

Proof. Let C be the set of all § < & such that I has a winning strategy for O(x, M, 9).
For a contradiction, assume that C' does not contain a club subset of k, that is,
k\ C is stationary.

For each § € k\ C, we can take a winning strategy os of II for O(k, M, d),
since O(k, M, d) is determined. Take a sufficiently large regular cardinal 0, and let
N = (Hg,€, M, {05 | 6 € k\C)). Then, we can take a C-increasing sequence (NN, |
n < w) of elementary submodels of N such that N,, € N,,11 and N,,NA € ANCf(k)
for all n < w. Note that x C |, c,,
can take N < A of size < k such that

o {Ny|new}CNCU,c, Nn
e 0*:=Nnkrker\C.

We will find a play (o, Bn,n | » < w) of O(k, M, §*) in which 1T has moved

according to o5+, but I wins. This will contradict that o5+ is a winning strategy of

N, < N. Then, since k \ C is stationary, we

I1. For n € w, define a,, B, and 7, as follows:
e ap:=0,and o, := N,_1 N A€ ANCo(k) for n > 1.
o B, :=sup(N Napt1).
® Y =05 ({Qm, B | M < m)).
First, we check that (o, Bn,¥n | n < w) is a legal play of O(k, M, §*) in which
IT has moved according to os«. For this, it is enough to check that «, < 8, <
Y < Qpy1 for all n < w. First, o, < B, since N1 € N. Next, £, < Tn
since s« is a strategy for II. To see that ~, < a,41, note that g8, < a,41 since
IN| < k = cf(ant1). S0 {Qm, Bm | m < n) € N,,. Note also that o5« € N, since
k C N, <N. Thus v, < N, N A = aypi1-
Next, we check that I wins with the play («y,, Bn,7n | n < w). For this let M be
Sk™M(6*U{a, | n < w}). Then M C NNH,y since 8*U{ay, | n < w} € NNHy < M.
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So M Nk =6 since NNk =6 C M. Note also that NN A C U, Bn \ o
by the construction of {(an,8, | n < w) and the fact that N C U, ¢, Nu. So
MNOXC U, <, Bn \ an. Hence I wins with (o, Bn,n | n < w). O

We also note that if cf(d) = w, then the resulting model M in O(k, M, ¢) is i.a. of
length w.

Lemma 5.4. Let k be a regular uncountable cardinal. Suppose A is a regular
cardinal > Kk, A is a well-ordering of Hy and M is a countable expansion of
(Ha,€,A). Then, for any 6 € kN Cf(w) and any {ay, | n <w} C A, it holds that
SkM (S U {av, | n < w}) is i.a. of length w.

Proof. Take 6 € kN Cf(w) and {a, | n < w} C X arbitrarily. We prove that
M :=SKM (5 U {a, | n < w}) is i.a. of length w.

Take an increasing sequence (J,, | n < w) converging to § and an enumeration
(pn(u,v1,...,0k,) | n < w) of all formulas of the language of M in which v is a
free variable. For each n < w, let h,, : *»Hy — H be the Skolem function of ¢,
in M, that is, hy(b1,..., b, ) is the A-least a with M |= ¢, (a,b1, ..., by, ) if such
a exists, and hy, (b1, ..., b, ) is undefined otherwise. Note the following:

(i) Each h,, is definable over M.
(i) M =U,cybn [0 U{ar [ 1 <w})].

For each n < w, let

M, = U B [P (8 U{eu | 1< n})]
m<n

Clearly, (M, | n < w) is C-increasing. Moreover |J, ., M, = M by (ii). Note
also that each M, belongs to M since M < M, and M, is definable in M from
parameters 0,, g, . ..,,—1 € M. Hence (M, | n < w) witnesses that M is i.a. of
length w. O

By Lemma 5.3 and 5.4, we obtain the next lemma.

Lemma 5.5. Suppose k and X are regular uncountable cardinals with k < X\, and
Z is a club subset of Pw(Hy). Then, there are a club C C X and § € kN Cf(w)
such that for any strictly increasing sequence (v, | n < w) of elements of C' there
is M € ZN1A, with the following properties.

(i) MNk=4.
(ii) {y e CIM N (succ(y)\7) # 0} = {7 [ n <w}.
In particular, [{MNX| M € ZNIA,} > A“.

Proof. First note that the latter statement follows from the former, since there are
A many strictly increasing sequences (v, | n < w) of elements of C. Below, we

prove the former statement.
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First, we define C and §. Take a well-ordering A of ‘H ) and a countable expansion
M of (Hx, €,A) such that for any M € Py(H,), if M < M and M Nk € k, then
M € Z. By Lemma 5.3, we can take § € x N Cf(w) such that I has a winning
strategy o for O(k, M, ). Let C be the set of all v < A which is closed under o,
that is, for any s € <“~, if (a, 8) = o(s), then «, 8 < v. Note that C is club in A.

To see that C' and § are as desired, suppose (7, | n < w) is a strictly increasing
sequence of elements of C. Then, let (ay, Bn) = o({ym | m < n)) for each n < w,
and let M := Sk™M (6 U {a,, | n < w}). We check that M belongs to Z NIA,, and
satisfies (i), (ii).

First, since each v € C is closed under o, we have the following.

(iii) ap < Bp < min(C) < 7p, and v, < any1 < Brt1 < suco(Vn) < Yp41 for all

n < w,

In particular, (@, Bn,7n | 7 < w) is a play of O(k, M, ) in which I has moved
according to a winning strategy o. So M satisfies (i) and the following.

(iv) MNAC U, Bn \ an.
Then, M < M, and M Nk € k by (i). So M € Z by the choice of M. Moreover,
M € TA, by Lemma 5.4. Finally, (ii) follows from (iii) and (iv). O

Now, we can easily prove Proposition 5.2 (1).

Proof of Proposition 5.2 (1). Assume SR, [TA,,. Let R be the set of all R C H,+
such that |[R| =k C Rand RNkt € kT.

First, we prove the following:

(i) For any stationary X C P (H,.+)NIA,, there is R € R with X NP (R) is
stationary.

Suppose X is a stationary subset of P, (H,+) NIA,. By shrinking X if necessary,
we may assume that M < (H,+,€) for all M € X. By SR, [IA,, we can take
R C H,+ such that |[R| = k C R and X NP,(R) is stationary. It suffices to prove
that RN kT € kT. Since X N P,(R) is stationary, it follows that R < (H,.+, €).
Then, from the fact that x C R, it follows that RN T € xT.

For each v € k1 \ k, we can take a club Y, C P, (7) of size « since |y| = k. Note
that for any R € R, there are non-stationary many M € P,(R) with M Nk ¢
YrAw+. Let Y :=J

(i) |Y|=~r".

(iii) For any R € R, the set {M € P.(R) | M N k™ ¢ Y} is non-stationary.

By (i) and (iii), the set {M € P.(H,+) NIA, | M Nk" ¢ Y} is non-stationary,
that is, there is a club Z C P, (H,+) such that {M Nx™ | M € ZNIA,} C Y.
Then, (k7)* < k™ by (ii) and Lemma 5.5. O

yERH\s Y,,. Then, we have the following.

Next, we prove Proposition 5.2 (2). We use the following technical lemma.
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Lemma 5.6. Let v be a singular cardinal of cofinality w such that p* < v for all
p<v,andv¥ >vt. Suppose A C P,(v") and |A| < vT. Let C be a club subset of
vt and S be a stationary subset of v N Cf(w). Then there is a strictly increasing

sequence (v, | n < w) of elements of C with the following properties.

(i) sup,c,m € S.
(i) ANU,<,succ(yn) \ vn is bounded in sup,, ., vn for any A € A.

Proof. Let D be the set of all § € C such that for any ¢’ <  there is 6” < § with
|C N (8" \ &) = v. Note that D is club in v*. Take 6 € DN S. We will find
(Y | n < w) satisfying (ii) such that sup,, ., 7» = 9.

Take a strictly increasing sequence (6, | n < w) in C converging to ¢ such
that do = 0 and |C' N (6p+1 \ In)| = v for all n < w. Moreover, take a bijection
7:CN6— (<¥v )\ {0}) such that 7[C N (5,41 \ 6,)] = "Fo.

For a < 4, let 7() := max(C N (o + 1)). Note that a € suce(7(a)) \ 7().
Then, for each A € A, let B4 be the set of all b € “v such that there is a countable
r C AN with b = {J,c, 7(7(a)). Note that [Ba| < [A]* < v, since |[A] < v, and
pe <wvforall p<v. Let B:=J e Ba. Then |B| < vt since |A] < v

Since v¥ > vT, we can take b* € “v\ B. For n < w, take v, € CN (8,41 \d,) with
() = b* [ (n+1). Clearly, (v, | n < w) is strictly increasing, and sup,, ., vn =
0 € S. We check (ii). For a contradiction, AN {J, ., succ(vn) \ ¥n is unbounded
in § for some A € A. Take a countable cofinal x C AN{J, .., succ(vn)) \ V- Since
7(a) = Y for a € suce(yn) \ Yo, we have that b* = |J, ., 7(7(a)) € B4 € B. This
contradicts that b* ¢ B. O

Now, we prove Proposition 5.2 (2).

Proof of Proposition 5.2 (2). We prove the contraposition. Let x be a regular un-
countable cardinal and v be a singular cardinal > & of cofinality w. Suppose pu* < v
for all cardinals u < v, and v* > vT. We prove that SR, | IA,, fails. Below, let
Ai=vt.

For each a € A N Cf(> w), take a C-increasing sequence (A, | n < w) such
that {J,, ., Aa,m = @ and |Ay | < v for all m < w. Take a partition (S5 | § < &)
of AN Cf(w) such that each Sy is stationary in .

Then, let X be the set of all M € P,,(Hx+) NIA, such that

(i) MNk € k.
(if) sup(M NA) € Syne \ M.
(iif) M N Aq,m is bounded in sup(M N A) for any o« € AN Cf(> w) and any
m < w.
It suffices to prove that X is stationary in P,(H,) and that X is non-reflecting,
i.e. X NP, (R) is non-stationary for any R C H, with |R| =k C R.

First, we prove that X is stationary. Take an arbitrary club Z C P.(H,). We

find M e XNZ.
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Let C' and ¢ be as in Lemma 5.5. By Lemma 5.6, take a strictly increasing
sequence (7, | n < w) such that sup,, ., vn € S5 and Aq,;m NU, ., succ(¥n) \ 1 is
bounded in sup,, ., 7, for all @ € ANCf(> w) and all m < w. Let M be the one as
in Lemma 5.5 for this (7, | n < w). Then, it is easy to check that M € X N Z.

Next, we prove that X is non-reflecting. Take an arbitrary R C H, with |R| =
k C R. We show that X NP, (R) is non-stationary.

Let o :==sup(RNA). If & € R, then there is no M € X NP, (R) with o € M,
since sup(M NA) ¢ M for any M € X by (ii). So X NP.(R) is non-stationary in
this case. Thus, we assume that a ¢ R. The rest of the proof splits into two cases
according to cf ().

First, suppose cf(a) = w. Take 0 < k with o € S5. Let Yy be the set of all
M € P.(R) with sup(M N A) =a and § < M Nk € k. Then it is easy to see that
Yy is club in P.(R). But X NYy = () by the property (ii) of elements of X. So
X NP, (R) is non-stationary.

Next, suppose cf(a) > w. Then, we can take m < w with sup(RN Ay m) = a.
Let Y7 be the set of all M € P,,(R) such that M N A, is unbounded in sup(M NA).
Then, it is easy to see that Y; is club in P, (R). But X NY; = 0 by the property
(iii) of elements of X. Hence X NP, (R) is non-stationary. O

6. SR [TA AND 2" FOR p < K

In this section, we show that SR} [ TA does not give any bound on 2* for a
regular uncountable cardinal p < x. We also prove that SR}, [TA,, does not give

any bound on 2“. More precisely, we prove the following.

Theorem 6.1. Assume GCH. Let u and k be reqular cardinals with p < k and
k € I[k]. Also, let P be a < p-closed poset with the < pu*-c.c. and the < p*-
approximation property. Suppose G is a P-generic filter over V.
(1) If p = w, and SR}, [TA~,, holds in V', then SR}, [TA-,, holds also in V[G].
(2) If p > w, and SR}, [ TA holds in V', then SR [TA holds also in VI[G].

Corollary 6.2. Assume GCH. Let k be a reqular uncountable cardinal, T be a

supercompact cardinal > Kk and p be an ordinal.

(1) There is a forcing extension V* of V' in which the following hold.
(i) If ¢ is a regular cardinal in V with 6 < K or § > 7, then 6 remains a
regular cardinal.
(ii) SR} [TAs,, holds, and 2¢ > p.
(2) Suppose p is a regular uncountable cardinal < k. Then there is a forcing
extension V** of V' in which (i) above and the following holds.
(iii) SR} 1IA holds, and 2* > p.

Proof of Corollary 6.2 from Theorem 6.1. Let V' be a forcing extension of V' by
I, in §3. Then k € I[x] in V/ by Lemma 3.5. Moreover, in V', GCH holds, all
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regular cardinals in V remain regular cardinals, and 7 remains supercompact in V'
by Lemma 3.4 and the fact that |I,;| = % in V.

Next, let V" be a forcing extension of V' by Col(k, <7). Then, (i) of the corollary
holds in V”. Moreover, in V", SR | TA holds in V" by Proposition 4.1 and 4.2.
Note also that GCH holds and € I[k] in V.

Now, let V* be a forcing extension of V/ by Add(w, p). Then V* witnesses (1)
of the corollary by Theorem 6.1 (1) and Fact 2.4. For (2), let V** be a forcing
extension of V" by Add(u, p). Then V** witnesses (2) of the corollary by Theorem
6.1 (2) and Fact 2.4. O

Below, we prove Theorem 6.1. A difficulty to prove this lies in that a forcing by
P adds many new sets of cardinality < x, and P, (H) are not absolute between V
and VP for a set H € V. In fact, Gitik [9] proved that if 4 = w, and P adds a real,
then X := 73%(/@"’)‘/P \ P.(kT)V is stationary. Also, X N P, (a) is non-stationary

\%

for any a < kT since P, ()Y contains a club set in V.

We use the following proposition, which gets rid of this difficulty.

Proposition 6.3. In V, assume GCH, let u, x and A be reqular cardinals with
p < Kk <A and let P be a < p-closed poset with the < pu*-c.c. and the < u™*-
approximation property, which belongs to Hg\/ Suppose G is a P-generic filter over
V. Then, we have (1), (2) and (3) below in V|G|, where ®({) is the following
statement for a regular cardinal { < k.

There is a club Z C PK(H;/[G]) such that if M € Z, and M s
i.a. of length ¢, then N := M NHY € V, N is i.a. of length ¢ in
V, and M = N[G].

(1) ®(¢) holds for every reqular cardinal ¢ < p.

(2) ®(¢) holds for every regular cardinal ¢ with p < ¢ < k.

(3) If > w, then ®(u) holds.

First, we prove Theorem 6.1 using Proposition 6.3.

Proof of Theorem 6.1 from Proposition 6.3. We only prove (2). The proof of (1) is
similar as (2) and left to the readers. Working in V|G|, we prove the contraposition
of (2).

Assume SR}, [TA fails in V[G]. Then, we can take a regular cardinal A > x and
a stationary X C H}\/[G] N IA such that for any R C H;/[G], if [ Rl=x C Rand R
is i.a. of length &, then X NP, (R) is non-stationary.

We may also assume P € HY by Lemma 3.2. Here note that x € I[x] in V[G]
since it holds in V, and cofinalities are absolute between V and V[G]. So we
may assume that every M € X is i.a. of regular length by Lemma 3.3. Then, by
Proposition 6.3, we may also assume that if M € X, then N :== M NHY € V, N
isia.in V and M = N[G].
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In V, let Q be the set of all Q C HY such that |Q| = x C Q < (HY, €, x,P) and
Q is i.a. of length k. We claim the following.

Claim. There is (Zg | Q € Q) € V such that the following hold for all Q € Q.
(i) Zgq s club in P.(Q) in V.
(ii) N[G] ¢ X for any N € Zy,.

Proof of Claim. First note that for any @ € Q, in V[G], |Q[G]| = & C Q[G] and
Q[G] is i.a. of length k. The latter is because if (Q¢ | £ < k) is an i.a. sequence
to Q in V, then (Q¢[G] | £ < k) is an i.a. sequence to Q[G] in V[G]. So, for each
Q € 9, X NP,(Q[G]) is non-stationary in V[G]. Then, in V[G], for each Q € Q,
let Z¢) be a club subset of P, (Q[G]) with Z, N X = 0, and let Zj, be the set of all
N € P.(Q) with N[G] € Z. Then it is easy to see that Zg is club in P.(Q) in
V]G], and N[G] ¢ X for any N € Zg,.

Take a sequence (Z’Q | Q € Q) € V of P-names such that (Zég)G = 7y, for all
Q € Q. Also, take p € G which forces that Z, is club in P, (Q) for all Q@ € Q. In
V, for each Q € Q, let Zg be the set of all N € P, (Q) such that pl-p “N € Zp, 7.
Then (Zg | Q € Q) € V. Since P has the k-c.c., each Zg is club in P.(Q) in V
by Lemma 2.3. Moreover, Zg C Z, for all Q € Q. Therefore (Zg | Q € Q) is as
desired. O (Claim)

InV,let Z :=JgegZq and Y := (P.(HY)NIA)\ Z. If Y is stationary in
Po(HY) in V, then so is the set Y = {N € Y | N < (HY,€,x,P)}. Moreover,
Y’ N P,(Q) is non-stationary for any i.a. set Q of length k. (If Q@ < (HY, €, k,P),
then @ € Q, and so (Y NP.(Q)) N Zg = 0 by the definition of Y. Otherwise,
Y’ NP, (Q) is non-stationary since N < (HY,€,,P) for all N € Y'.) So Y’ will
be a counterexample of SR, [TA in V if Y is stationary. Thus it suffices to prove
that Y is stationary in V.

In V, take an arbitrary F : <“HY — HY. It suffices to find N € Y such that
NNk €k and N is closed under F. Since X is stationary in V[G], we can take
M € X such that M N« € x and M is closed under F. Let N := M NHY. Note
that N € V, N € TA in V and M = NJ[G] by the assumption on X. Then, in V,
N € P(HY)NIA, and N ¢ Z by (ii) of Claim and the fact that N[G] = M € X.
So N € Y. Moreover, Y is closed under F' since so is M. Thus N is as desired. [

Below, we prove Proposition 6.3. First we prove (1).

Proof of Proposition 6.3 (1). We work in V[G]. Let ¢ be a regular cardinal < p.
Take a well-ordering A of "HX[G], and let M := (H;/[G], €A HY K, P,G).
Then let Z be the set of all M € P,Q(’HX[G]) such that M < M and M Nk € k.
Note that Z is club in ’P,Q(’HX[G]). We show that Z witnesses ®(().
Suppose M € Z and M is i.a. of length (. Let N := M NHY . Note that for any
P-name @ € N, we have ¢ € M since M < M. Note also that for any a € M,
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there is a P-name ¢ € N with ¢ = a. So M = N[G]. We prove that N € V and
N isi.a. of length ¢ in V.

Let (Mg | € < ¢) be an i.a. sequence to M. For each £ < (, by the <p*-c.c. of
P, let N¢ be the A-least element of Py (HY)Y such that M NHY C N¢. Note that
(N{ 1€ < (') € M forall (" < (. Note also that N} C M for all § < ( since N} € M
and [N{| < k. So N = g N{. But (N¢ | § < () € V by the <p-closure of P. So
N=Ue NeeV.

For each § < (, let Ng := |, N;. Then (N¢ | £ < ¢) € V. Moreover,
(Ne | € < () is a C-increasing, U Ne = N, and (Ng | £ < (') e MNHY = N for
all (' < ¢. Hence N is i.a. of length { in V. O

To prove Proposition 6.3 (2) and (3), first we reduce them to the following lemma.

Lemma 6.4. In V', assume GCH, let p and \ be regular cardinals with p < { < A,
and let P be a < p-closed poset with the < p*-c.c. and the < p*-approzimation
property, which belongs to ’HX Suppose G is a P-generic filter over V.. Then, we
have (1) and (2) below in V[G], where ¥(() is the following statement for a reqular
cardinal ¢ with p < ¢ < A.
There is a club Z C Pc+ (HI\/[G}) such that if M € Z, and M is
i.a. of length ¢, then N := M NHY{ € V.
(1) W(¢) holds for every regular cardinal ¢ with p < ¢ < A.
(2) If p > w, then V(w) holds.

First, we prove Proposition 6.3 (2) and (3) using Lemma 6.4. For this, we use
the following lemma.
Lemma 6.5. InV, assume GCH. Let u, A\, P and G be as in Lemma 6.4, and let
be a regular cardinal with p < ¢ < A. InV[G], suppose M < <’H§\/[G], e, HY, 1, P,G),
|M| = ¢ and M s i.a. of length (. Let N := M NHY. Then, (SN)NV C N.

Proof. Take an arbitrary f € (SSN)NV = (SSN)NHY . Tt suffices to prove f € M.
Let n := dom(f).

Let (M | € < ¢) be an i.a. sequence to M. By the regularity of ¢, we can take
¢ < ¢ with ran(f) C M. Since P has the < ut-c.c., we can take K € HY such
that My C K and |K| = max{u,|M¢|}. By the elementarity of M, we can take
such K € M. Note that ( C M. So ("K)NV = ("K)NHY € M. Note also that
|[("K)N V| < ¢ since |[K| < ¢, and GCH holds in V. Thus ("K)NV C M. Since
fe(K)nV, we have f € M. a

Proof of Proposition 6.3 (2) and (3) from Lemma 6.4. Let u, k, A\, P and G be as
in Proposition 6.3, and let  be a regular uncountable cardinal such that u < { < k.
Working in V[G], we prove ®(().

Note that ¥(¢) holds by Lemma 6.4. Let Z’ be a club subset of Pc+ ("H;/[G])
witnessing ¥({). Take a well-ordering A of ’H;\/[G], and let M’ be the structure
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(HX[G], €, A HY, u, k5, P, G). We may assume that if M’ € Z’, then M’ < M’, and
|[M'| = ¢ € M'. Let M be the structure obtained from M’ by adding Z’ as a
predicate. Then, let Z be the set of all M € PN(H;/[G]) such that M < M and
M Nk € k. We show that Z witnesses ®(¢).

Suppose M € Z and M is i.a. of length . Let N := M N‘HY. Then M = N[G]
since M < M. We show that N € V and N is i.a. of length ¢ in V.

Let (M¢ | £ < ¢) be an i.a. sequence to M. Using the < s-c.c. of P, for each £ < (,
let K¢ be the A-least element of HY such that M¢ NHY C K¢ and |K¢| < k in V.
By recursion on § < ¢, let M{ be the A-least element of Z’ such that {J, . M, C M
and (M | n < &), K¢ € M{. Let M' := J;_ M{. Then M' € Z', and M" is i.a. of
length ¢ since (M | £ < () is an i.a. sequence to M’. Note also that M; € M for all
€ < ( since M; is definable from (M, | n < &) in M. Then M; C M since M < M
and M Nk Ek. So M' C M.

Let N' := M’ NHY. Then N’ € V since Z' witnesses ¥({). Moreover, N/ <
(HY, €, k) since M/ < M'.

Note also that |N'| = ¢ in V[G] since |M’| = ( € N’ C M’. Then |N’| = ( in
V by the <(T-c.c. of P. In V, take a bijection f : ¢ — N’, and let NE’ = f[¢] for
each § < (. Then, U, N = N', and all initial segments of (N{ | £ < () belong to
N by Lemma 6.5. So <Né | £ < ¢) is an i.a. sequence to N'.

In V,let N*:= J{K € N' | |[K| < x} and N := U{K € N{ | |K| < &} for
£ < (. Then it is easy to see that (N7 | § < () is an i.a. sequence to N* in V. So
it suffices to show that N* = N (= M NHY).

Since N' C M < M and M Nk € k, we have N* C M. Also, N C HY clearly.
So N* C N. On the other hand, N C [J; K¢ by the choice of (K¢ | £ < ().
Moreover, [ K¢ C N* since K¢ € N’ and |K¢| < & for all £ < (. Hence
N C N*. (Il

Below, we prove Lemma 6.4. First, we prove (1).

Proof of Lemma 6.4 (1). Let ¢ be a regular cardinal with p < ¢ < A. Working in
V|G, we prove ¥(().

Let M be the structure (HY[G]7€,H§\/,M,C7P, G), and let Z be the set of all
M € Per(HY9) such that M < M and ¢ € M. Then Z is club in Py (H} ).
We claim that Z witnesses ¥(().

Suppose M € Z and M is i.a. of length (. Let N := M N ’Hy. We must prove
N € V. Since P has the < yT-approximation property, it suffices to prove that
NNAeV forall AeV with |A| < u. Suppose A € V and |A| < p.

Let (M¢ | € < ¢) be an i.a. sequence to M. Since ¢ > u, we can take £ < ¢ with
NNACM:NHY. By the <put-c.c. of P and the elementarity of M, we can take
K € MN#HY such that M¢NHY C K and |K| < (. Then NNAC K C MNHY =
N,and K, AeV.So NNA=KnNAeV. a
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Before proving Lemma 6.4 (2), we make some preliminaries.

Lemma 6.6. Let A be a regular uncountable cardinal and A be a well-ordering
of Hx. Suppose No, N1 < (Hx,€,A), and both Ng N A and N1 N\ are w-closed.
Suppose also that there is 1 € No N N1 N A with Ng N¢ # N1 N, and let * be the
least such v. Then * is a reqular cardinal, and sup(No N ¢*) # sup(Ny N ™).

Proof. First, we prove that sup(Ng N ¢*) # sup(Ny N ¢*). Assume not. Then, for
any a € (N; N e*)\ (N1—; N*), we can take o/ € N;_1 N* with @’ > «, and such
o’ is not in Nj since if &’ € N, then o/ € N;NN;_1 N A, N;Na' # N;_1 N/, and
o' < 1*, which contradicts to the choice of +*. Then we can recursively construct
an increasing sequence (o, | n < w) such that a,, € (No N ¢*)\ (Ny N*) if n is
even and ay, € (N1 N ™)\ (NoNe*) if n is odd. Note that o* := sup,, ., a, < ¢*
and a* € NgN Nj since both NgNA and N1 N\ are w-closed. Let A be the A-least
cofinal subset of a* of order type w. Then A € Ny N Ny, and so A C Ny N Ny since
A is countable. Take o € A with g < . Then o« € Ng N N1, Ng N # N1 N,
and « < ¢*. This contradicts to the choice of +*.

Next, we prove that ¢* is regular. Assume not. Let /** := cf(+*) < +*. Note
that t** € Ny N Ny since * € Ny N Ny. Take the A-least increasing continuous
cofinal function f : ** — *. Note that f € Ny N N;. Then, for each i = 0,1,
it easily follows from the elementarity of N; that sup(N; N ¢*) = f(sup(V; N ¢**)).
Then, since sup(Ng N ¢*) # sup(N1 Ne*), we have sup(N; N ¢**) # sup(N; Ne**). In
particular, Ny N ** £ N1 N **. This contradicts the choice of +*. ([l

Lemma 6.7. Let v be a singular cardinal of cofinality w, I be a set of regular
cardinals with supl = v and f = (fo | @ < vT) be a scale in TI. Suppose
((ts,ds) | 8 € <¥2) is a sequence with the following properties.

(i) ds < 15 €I for all s € <¥2.

(ii) For all s € <2, 14 < t5~0 = Ls—1, and ds—~0 F Os—1-

(iii) For any b€ “2, Iy := {tp}n | n < w} is cofinal in v.
For each b € 2, let gy € I1I}, be such that gy(tp1n) = Opjn. Then, there is b € “2
such that gy #* fo I Iy for any a < vt.

Proof. For a contradiction, assume that for any b € <“2 there is a; < v with
gb =* fa, [Ip. Foreach s € <¥2 let B; :={b€“2|sCb}and A, :={ap | b € Bs}.
Then let
v :=min{sup™ A, | s € w2},
where sup™ A denotes sup{a+1 | « € A}. Take s_; € <“2such that v = sup™ A,_,.
Note the following.
(iv) supt Ag = for all s € <¥2 with s_; C s.

The rest of the proof splits into three cases according to ~.
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First, suppose v is a successor ordinal. We recursively construct a C-increasing

sequence (s, | n < w) of elements of <“2 extending s_; such that

(V) 0s,, = fy—1(ts,) if n is even and &, # fy—1(ts,) if n is odd.
If s,—1 has been taken, then take s, as follows. First, suppose n is even. By (iv),
we can take b € B,, | with g, =" fy_1[I,. Take k < w such that dom(s,,—1) < k
and 0y = gu(to1k) = fy—1(to). Then let s, := b[k. Next, suppose n is odd. Let
t; == sp—1 "4 for i = 0,1. By (ii), we can take i < 2 with d&;, # fy—1(,)- Let s, be
such t;.

Let b := J,,c, 5n- By (v), both of the sets {v € I, | go(¢) = f,-1(¢)} and
{t € I | g(t) # fy-1(1)} are unbounded in [,. So there is no o < v with
g =" fa [ Ip since fis <*-increasing. This contradicts that g, =* fo, [ Ip.

Next, suppose + is a limit ordinal of cofinality w. Take a cofinal sequence (7, |
m < w) in . We recursively take a C-increasing sequence (s, | n < w) of elements
of <*2 extending s_; such that

(vi) 85, > fyn(ts,) for all n < w and all m < n.

If s,_1 has been taken, then take s, as follows. By (iv), take b € B, _, with
ap > Y for all m < n. Then, we can take k < w such that dom(s,,—1) < k and
Ok = gu(tork) = fr,, (to1i) for all m < n. Let s, :==b[k.

Let b:=J, .,
Since b € By_,, this contradicts that sup™ As_, = .

Finally, suppose 7 is a limit ordinal of cofinality > w. Then,

Sn. By (vi), fy,, <* gp for all m < w. Then oy > sup,, ., Ym = 7-

B:=supT{min As | s_1 C s € <w“2} <~.

Note that min A; < 8 < sup A, for all s € <“2 with s_; C s. We recursively take
a C-increasing sequence (s, | n < w) of elements of <“2 extending s_; such that
(vii) &5, < fa(ts,) if n is even, and d,, > fa(is,) if n is odd.
If s,,—1 has been taken, then take s, as follows. First, suppose n is even. Then,
since min A;,_, < 8, we can take b € By, , with g, <* fg [ I;. Take k < w
such that dom(s,—1) < k and dp;x = gp(terx) < fa(ewir). Then let s, = b k.
Next, suppose n is odd. Then, since sup As, _, > 3, we can take b € B, _, with
fo 11y <* gp. Take k < w such that dom(s,—1) < k and 01k = go(tor) > fa(tok)-
Then let s, :=b[k.
Let b := U,c,, Sn- By (vii), there is no o < v* with g, =* f, [ I,. This
contradicts that g, = fo, [ 1p. O

Now we prove Lemma 6.4 (2).

Proof of Lemma 6.4 (2). Suppose p > w. Working in V[G], we prove ¥(p).

Take a bijection F': A — HY in V. Let M := <’H§\/[G], €, HY,F,1,P,G), and let
Z be the set of all M € P+ ('HAV[G]) such that M < M and 4 C M. Then, Z is
club in P+ (’HX[G]). We show that Z witnesses ¥(().
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Suppose M € Z and M is i.a. of length u, and let N := M N ’H,f\/ We prove
that N € V. Note that N = F[M N ] since M < M. So it suffices to prove that
M N e V. By induction on cardinals v with u < v < A, we prove that M Nv € V.

Note that if v = u, then M Nv = u € V. Suppose v is a cardinal with p < v < A,
and M Np €V for all cardinals p with u < p < v. We show that M Nv € V. Our

proof splits into four cases.

Case 1. v is a successor cardinal.

Let p be a cardinal with v = p™. If p ¢ M, then M Nv = M Np € V since
M < M. So we assume that p € M.

Let § := sup(M Nv) > p. Since M is i.a. of length p, there is a club C C §
of oder-type p with C' C M. (Take an i.a. sequence (M | £ < ¢) to M, and let
C = {sup((U,;<¢ My) Nv) | £ < ¢}. Then € C M, and C'is a club subset of § of
order-type p.) Since § > p, we may assume C N p = ().

Let A:=MnNpe V. For each a with p < o < v, let 7y : p = « be the F-least
bijection in V. Note that M N a = 7,[A] since M < M. Hence we have

(i) molA] = mg[A] Na for all o, f € C with a < 8.

Take a P-name C of C' and p € G which forces (i) and that C is club in §. By

the < p-closure of P, in V, we can take a descending sequence (pe | £ < p) in P

below p and an increasing continuous cofinal sequence (¢ | £ < p) in 6 such that
pelkp “ve € C7. Let D :={v¢ | € < pu} € V. Then D is club in §, and
(i) mo[A] = mg[A]Na for all o, B € D with o < S.
Since p > w, C N D is unbounded in 6. Then, M Nv = U conp TalA]l =
Uaen TalA] by (i) and (ii). Then, since D, A, (7, | « < v) € V, we have that
MnveV.

Case 2. v is a limit cardinal with cf(v) < p.

Take a sequence (p¢ | & < cf(v)) of cardinals which converges to v. By the
induction hypothesis, M Npe € V for each { < cf(v). Then (M Npe | £ < cf(p)) € V
since P is < u-closed. Then, M Nv = U§<Cf(u) MnNpeeV.

Case 3. v is a limit cardinal with cf(v) > p.
Since |M| = p < cf(v), we can take a cardinal p < v such that M Nv = M Np.
But M Np €V by the induction hypothesis.

Case 4. v is a limit cardinal with cf(v) = p.

For a contradiction, assume M Nv ¢ V. Then, note that M Nv is unbounded in
v. Let M be a P-name of M and G be the canonical P-name for a P-generic filter.
Then we can take p € G which forces the following.

(iil) M < (’H}\/[G], €, HY,F, i, P,G), |M| = p, and M is i.a. of length .

(iv) MNpeV forall p <.
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(v) MNv ¢ V.
Below, we work in V.

Take a sufficiently large regular cardinal # and a countable elementary submodel
K of (HY,€,\, F,u,v,P,p, M). Let y := sup(K Nv). Note that x is a singular
cardinal of cofinality w. Let (x, | n < w) be the F-least increasing cofinal sequence
in x. Let I be the set of all regular cardinals ¢ with u < ¢ < x. By Lemma 3.7, let
(fa | @ < x™) be the F-least y-continuous scale in II1.

For each s € <¥2, we will define ¢4, 5 as in Lemma, 6.7. For this, we will use the

following claim.

Claim. Suppose q € PN K and q < p. Suppose also that p € KNy, A€ P(p)NK
and qlFp “M N p=A". Then, xn, € A for all n < w with X, < p.

Proof of Claim. First, p forces that M Nv is unbounded in v by (iv) and (v). Then,
we can recursively take a descending sequence (g, | m < w) in PN K below ¢ and
a sequence (@, | m < w) in K Ny so that ¢, IFp “ ., € M?” and oy > Xm. By
the < p-closure of P, take ¢* € P with ¢* < ¢, for all m < w. Then, by Fact 3.1 (3)
and (iii) above, ¢* forces that x = sup,, ., &m € M and so x,, € M for all n < w.
Also, ¢* forces that M Np= A. So xn € A for all n < w with x, < p. O (Claim)

By recursion on s € <¥2, we will define v, € INY, §s < ts, ps € PNK, ps € KNy
and A; € P(ps) N K so that the following hold for all s € <¥2.

(vi) pg < p, and ps~; < ps for both i =0, 1.

(vii) pslFp “Ag=MNps”.

(viii) ¢5 € Ag, and §; = sup(A; Nig).

(i) ts~0 = ts~1, and ds~q 7# 0s~1.

(x) There is n < w such that ps < xn < pPs—0, Ps—~1-

Let pg := p™* € K. By (iv), we can take py < p and Ay C p* in K such that
po IFp “M N ptt = Ay”. Then, let 1y := pt € K and 6y := sup(4y N pt) € K.
Note that ¢y € Ay by (iii). So tg, dg, Pe, pp and Ay satisfies (vi)—(x).

Suppose s € <2, and ¢, d, ps, ps and A, has been taken. We define t4~;, §,~;,
Ps—i» ps—~i and Ag~; for i = 0,1. By (iv) and (v), we can take p’ > ps, pb, Py < Ds
and A), Ay C p/ in K so that p} IFp “M N p' = A;” and A) # A}. Take n < w with
p' < Xn. For both i = 0,1, let ps~; be the least p € KNv with x,, < p. Moreover, in
K, by (iv), take ps~; < p} and Ay~; C pe—; such that pe—; IFp “ MNpe~; = Ag~; 7.

Note that As~9 N xn # As~1 N xn and x, € Ag~9 N Ag~1 by Claim. For
both i = 0,1, let ts~; be the least t+ € Ag~g N As~1 with Ag—~g Nt # As~1 N
Moreover, let §s~; := sup(As~; Nis~;). Here note that if we let N; be the smallest
w-closed elementary submodel of (HY, €, F) such that As~; C N; and N; N A is
w-closed, then Ag~; = N; N ps—~; by (iii) above, Fact 3.1 (3) and the fact that
ps—i IFp “M N Ps—~i = As~; 7. S0 tg~; is regular and d5~¢ # ds~1 by Lemma
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6.6. Then, it is easy to check that ts~;, ds—~;, Ps—~i, ps—~i and Ag,~; satisfies all the
requirements.

We have taken ¢s, ds, ps, ps and Ag for all s € <“2. Note that ((¢s,ds) | s € <“2)
satisfies the assumption of Lemma 6.7. Thus there is b € “2 such that g #* f, [J
for any a < x*, where J = {14, | n < w}, and g € ILJ is such that g(tp1n) = dppn.
Let B :=J
for all n < w.

Then, ¢ forces that M N x = B by (vii). Moreover, ch}; = g by (viii). So ¢
forces that there is no a < x* with chj‘{l =* fo [ J. On the other hand, g forces
that y = sup B € M by Fact 3.1 (3) and (iii) above, and so (f, | @ < x*) € M.
Moreover, since J is a countable subset of B, p forces that J € M by Lemma 6.5.
So p forces that (f, [J | a < x*) € M. Note also that (f, [J | @ < x*) remains to
be a ju-continuous scale in V¥ by Lemma 3.7 (2). So, by Lemma 3.6, ¢ forces that
there is a < xT with chJJw =* f, I'J. This is a contradiction. O

Apn. Moreover, by the < p-closure of P, take ¢ € P with ¢ < pypn,

n<w

This completes the proof of Theorem 6.1.

7. SRX TA~,, AND SCH

In this section, we show that SR}, [TA-,, does not implies SCH above «. For this,
we prove that a Prikry forcing above k preserves SR [TA~ .

For a measurable cardinal v and a normal ultrafilter U over v, let P(U) be the
Prikry forcing with respect to U, that is,

e P(U) consists of all pairs (s, A) such that s € <¥v, s is strictly increasing
and A € U,

e (t,B) < (s,A) in P(U) ift O s, B C A, and t(n) € A for any n €
dom(t) \ dom(s).

Recall that a forcing by P(U) adds no new bounded subsets of v, preserves all
cardinals and makes v to be a singular strong limit cardinal of cofinality w. See
Jech [10, Chapter 21] for example.

We prove the following:

Theorem 7.1. Suppose k is a reqular cardinal > wy, 2* < k for all cardinal p
with ™ < K, and k € I[K]. Let v be a measurable cardinal > r and U be a normal
measure over v. Suppose G is a P(U)-generic filter over V.. If SRX [TAs,, holds in
V, then so is in V[G].

Corollary 7.2. Assume GCH. Let k be a reqular cardinal > ws, and there are two
supercompact cardinals > k. Then there is a forcing extension V* of V' in which
the following holds.

(i) All regular cardinals < k in V' remain regular.

(ii) SR [TAs,, holds but SCH fails above k.
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Proof of Corollary 7.2 from Theorem 7.1. Let 7 and v be supercompact cardinals
with Kk <7 < v.
We can take a < x-Baire forcing extension V' of V' in which the following hold.
(iii) & € I[K].
(iv) 7 is supercompact.
(v) v is measurable, and 2" > v+,

For this, first make 7 a Laver indestructible supercompact cardinal by a < x-closed
forcing of cardinality 7, next blow up 2” with preserving the measurability of v by
< 7-directed closed forcing, and finally force x € I[x] by L.

Next, let V" be a forcing extension of V' by Col(k, < 7). In V", (iii), (v) and
SRY | TA-,, holds. Tt also holds in V" that 2¢ < & for all u with u™ < &k since
this holds in V, and V" is a < k-Baire forcing extension of V. Finally, let V*
be a forcing extension of V'’ by P(U) for some normal ultrafilter U over v. Then
SR’ TA-,, holds in V* by Theorem 7.1. Moreover, in V*, (i) holds, but SCH fails
at v. Thus V* is as desired. O

Below, we prove Theorem 7.1. We use the following well-known fact.

Lemma 7.3. InV, suppose U is a normal ultrafilter over a measurable cardinal v
and ¢ is a regular uncountable cardinal < v. Suppose G is a P(U)-generic filter over
V and f €V NVIG]. Then, there is an unbounded D C ( such that f| D € V.

Proof. Tt suffices to prove that the following (*) holds in V:

() Suppose f is a P(U)-name, and (s, A) € P(U) forces f € V. Then there are
(t,B) < (s, A) and an unbounded D C ¢ such that (¢, B) forces f | D € V.

Take a P(U)-generic filter G’ over V' which contains (s, 4). In V[G’], for each
£ < ¢, take (t¢,Ce) € G’ below (s, A) which decides f(€). Then, since ¢ is regular
uncountable in V[G'], we can take t with E := {£ < w; | t¢ =t} unbounded in (.

In V, let D be the set of all { < ¢ for which there are az and B¢ € U such that
Be € A and (t, Be) IFpu) “ f(€) = a¢”. Note that E C D. So D is unbounded in
(. InV,let B :=()ecpBe € U and g be a function on D such that g(§) = ae.
Then (¢, B) < (s, A), and (¢, B) forces that f[D =g € V. O

The next lemma is a key for Theorem 7.1.

Lemma 7.4. Let k and X be reqular uncountable cardinals such that k < A\, k € I[K]
and 2# < k for all cardinals p with u™ < k. Suppose v is a measurable cardinal
with k < v < 2¥ < X and U is a normal ultrafilter over v. Suppose (s, A) € P(U)
and X is a P(U)-name for a stationary subset of PK(HYMU)) NIA,. LetY be
the set of all N € P(HY) NTAs. such that (t,B) IFpqyy “N[G] € X 7 for some
(t,B) < (s,A) witht € N. ThenY is stationary in P (HY).
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Proof. In V, take an arbitrary F : <“HY — HY. We will find N € Y such that
NNk €k and N is closed under F.

In V, take a well-ordering A of HY, and let N := (H{,€,A,k, F). Take a
P(U)-generic filter G over V' with (s, A) € G. Below, we basu:ally work in V[G].

Let 6 be a regular cardinal > 2*, and let M := (’HX[G], e,N,\ U G). Let
X := XS, Since X is stationary, we can take M < M such that M Nk € k and
M = Mn 'H;/[G] € X. Note that x € I[s] in V[G]. So M is i.a. of length ¢ for
some regular uncountable cardinal ( < xk by Lemma 3.3. Let (M, | £ < () be an
i.a. sequence to M.

Note that for each £ < ¢, we can take K¢ € P,(HY )V such that K¢[G] = Mg: Let
p = |Me|VIGl < g, and take a P(U)-name M of M. Then, there is p € G which
forces that |Me| = pand Mg C Hy. Then, in V, we can take a sequence (a | o < p1)
of P(U)-names such that a, € HY for all @ < pand p Ik “ Mg = {ao | @ < p} 7.
Let K¢ :={aq | @ < p}.

For each £ < (, let K¢ be the A-least such one. Note that (K¢ | { < (') belongs
to M for each ¢’ < ( since (K¢ | £ < (') is definable in M from a parameter
(M | € <) € 0.

By Lemma 7.3, we can take an unbounded D C ¢ such that (K, | £ € D) € V.
Here note also that P(¢’) € M since P((') € M, |P(¢')| < k by the assumption of
the lemma, and M Nk € k. So (K¢ | £ € DN(') € M for all ¢ < (.

Note that (sup(M¢Nk) | € < ¢) € V since P(k)Y = P(x)VIC. In V, by recursion
on § < ¢, let N{ be the A-least element of P,.(HY) such that

(i) N¢ <N,
(i) N{Nk € K, and sup(Me N k) < NNk,

(iii) U <t N’ - N’ and (N,’7 |n <& e NE’.

(iv) K¢ C N€ if¢eD.

Let N := ;o Ni € V. Then N’ € P.(HY) in V. Moreover, (N{ €< () isan
i.a. sequence to N’. So N' e IA.,, in V.

Note also that N'[G] = M: By (iv) and the unboundedness of D in ¢, we have
N'[G] 2 Ugep KelG] = Ugep Me = M. For the revserse inclusion, note that
N¢ € M for each § < ( since NN/ is definable in M from parameters (M, | n <
5) (Ky|nmeDNéE+1) € M. Then N¢ C M for all £ < ( since |N{| < K and
MNk €k So N = = Ug<c Vg € M. Then N'[G] € M since M < M. Hence
N'[G) € MnHy =M.

Recall that M € X = X% and M < (HE\/[G], €, HY, Ak, F,v,U,G). Then, since
N'[|G] = M, we can take (¢, B) € G such that

(v) (t,B) IFpqy “N'[G] € X 7,

(vi) (t, B) e “ N'[G] < <HV[G e, HY, Ak, F,1,U,G) .

We may assume (¢, B) < (s, A) since (s,A) € G. In V, let N := SKN(N' U {t}) €
P (HY). We show that N is as desired.
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First, N is closed under F since N < A. Next, we check that NNk € x. For this,
note that N’ C N C M, where the latter inclusion is because N'U{t} C N'[G] = M
since (t,B) € G, and M N'HY < N. Moreover, NNk 2 M N« by (ii). Hence
NNk=MnNk € k.

We must show that IV € Y. Below, we work in V. First, we show that N € TA< .
Note that N = {f(t) | f: <“k — HY,f € N'} since t € <“s € N < N. For each
E<Clet Ne:={f(t)| f:<“k—H{,fE€ N¢}. Here recall that (N{ | § < () is an
i.a. sequence to N’. Then it is easy to check that (N¢ | £ < () is an i.a. sequence
to N. So N € TA.,.

Next, we prove that (¢, B) lFp) © N[G] € X 7. This implies that N € Y since
t € N and (t,B) < (s, A). First, note that (¢, B) IFp) “t € N'[G]”. Then, from
(vi), it easily follows that (¢, B) IFpy) “N[G] = N'[G]”. Hence (t, B) forces that
NI[G] € X by (v). O

Now, we prove Theorem 7.1.

Proof of Theorem 7.1. Assume SRY [TA-, holds in V. We show that SR [TA-,,
holds also in VP(). Let G be the canonical P(U)-name for a P(U)-generic filter.

For a while, we work in V. Suppose A is a regular cardinal > 2", (s,A) e P(U)
and X is a P(U)-name for a stationary subset of PN(HX[G]) NIAS,. It suffices to
find (¢, B) < (s, A) and a P(U)-name R for a subset of HY[G] such that (¢, B) forces
that \R| =k C R, Ris i.a. of length s, and X N ’PK(R) is stationary.

Let Y’ be the set of all N € P, (H})NIA~, such that N < (HY, €, k,v,U) and
(tn, BN) IFp) “NI[G] € X7 for some (tx, By) < (s,A) with ty € N. Then Y” is
stationary by Lemma 7.4. By the Pressing Down Lemma, we can take ¢ such that
Y :={N eY'|ty =t} is stationary.

By SR’ [TA-,, we can take @ C H such that |Q| =k C @, Q is i.a. of length
x and Y NP, (Q) is stationary. Let R be a P(U)-name for Q[G], and let

B:=(|{B~|Ne€YNP.Q)}.

Note that B € U since |Y NP, (Q)| < v. So (t,B) € P(U).

We show that (¢, B) and R are as desired. Take a P(U)-generic filter G over V
which contains (¢, B). Let R := RS = Q[G] and X := X¢. Working in V|[G], we
check that |R| = x C R, R is i.a. of length x and X NP, (R) is stationary.

First note that Q@ < (HY, €, k,v,U) since N < (HY,€,k,v,U) for all N € Y,
and Y N P.(Q) is stationary. So Q C Q[G] = R < <’H§\/[G],€,m,y, U,G). Then,
|R| = £ € R. Moreover, taking an i.a. sequence (Q¢ | £ < k) to Q in V, it is
easy to see that (Q¢[G] | £ < k) is an i.a. sequence to R = Q[G]. Finally, we
prove that X NP, (R) is stationary. For this, note that Y NP, (Q) is staitonary in
V|G] since so is in V, and |Q| = k < v. Take an C-increasing continuous cofinal
sequence (Q | £ < k) in Py(Q). Then S :={{ < x| Q¢ € Y} is stationary. Note
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that (Q¢[G] | £ < k) is C-increasing continuous and cofinal in P, (R). Moreover,
Q:[G] € X for all £ € S. So X N'Px(R) is stationary. O

We end this section with a question. Note that in our proof of Corollary 7.2,

SCH fails at a singular cardinal of cofinality w in V*. So the following question

naturally arises.

Question 7.5. Does SR}, | TA.,, imply that SCH holds at singular cardinals of

cofinality > w above k?
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