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Abstract

We prove that the Subcomplete Forcing Axiom (SCFA), introduced by
Jensen [6], is consistent with ♦+

ω1
. For this, we introduce a weaker varia-

tion of the subcompleteness of forcing notions. More precisely, for some
kinds of ♦ω1 -like sequences ~K, we define the notion of ~K-subcompleteness,
which is weaker than the subcompleteness. Then, the forcing axiom for
~K-subcomplete forcing notions ( ~K-SCFA) implies SCFA. We show that
~K-SCFA is consistent and implies ♦+

ω1
.

1 Introduction
Jensen [4, 7] introduced the notion of subcomplete forcing, which is weaker than
the σ-closure. Besides σ-closed forcing notions, the class of all subcomplete
forcing notions include Namba forcing (under the Continuum Hypothesis CH),
Prikry forcing and forcing notions shooting clubs through stationary subsets
of ordinals of countable cofinality. Subcomplete forcings add no new reals and
preserve stationary subsets of ω1. Also, all revised countable support iterations
of subcomplete forcings are subcomplete. Jensen [5] used subcomplete forcing
notions to settle the consistency strength of the Extended Namba Problem.

The original subcompleteness in [4, 5] has some technical condition which
is used to prove that all revised countable support iterations of subcomplete
forcings are subcomplete. Recently, Fuchs-Switzer [2] proved that this technical
condition is not necessary for nice iterations developed by Miyamoto [9].

The forcing axiom for subcomplete forcing notions, which is called the Sub-
complete Forcing Axiom and denoted as SCFA, is interesting as a fragment of
Martin’s Maximum (MM) consistent with CH. In fact, Jensen [6] proved that
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SCFA is consistent with ♦ω1
. Jensen [6] also proved that SCFA implies sev-

eral interesting consequences of MM such as the Singular Cardinal Hypothesis
and the reflection of stationary sets consisting of ordinals of countable cofinal-
ity. Fuchs [1] and Fuchs-Switzer [2] investigated consequences of SCFA in more
details.

Besides the above mentioned consequences of SCFA, MM has many inter-
esting consequences which are consistent with ♦ω1

. For example, MM implies
the reflection of stationary subsets of Pω1

(λ) for λ ≥ ω2, which is often called
the Weak Reflection Principle and denoted as WRP, Chang’s Conjecture and
the non-existence of ω1-Kurepa trees. It was asked in [1] and [2] whether these
consequences of MM also follows from SCFA. Here recall that

WRP ⇒ Chang’s Conjecture ⇒ ¬∃ω1-Kurepa trees ⇒ ¬♦+
ω1

.

In this paper, we answer this question negatively. Namely, we prove that if
ZFC is consistent with the existence of a supercompact cardinal, then ZFC +

SCFA+♦+
ω1

is consistent. (Corollary 5.8)
To prove this, we introduce the notion of ~K-subcomplete forcing for a ♦-

model sequence ~K = 〈Kξ | ξ < ω1〉. It will follow from the definition that
all subcomplete forcing notions are ~K-subcomplete. So the forcing axiom for
~K-subcomplete forcing notions, denoted as ~K-SCFA, implies SCFA. We prove
the following.

(I) For any ♦-model sequence ~K, all nice iterations of ~K-subcomplete forcings
are ~K-subcomplete. (Theorem 4.2)

(II) If ZFC is consistent with the existence of a supercompact cardinal, then
ZFC is consistent with ~K-SCFA for some ♦-model sequence ~K. (Theorem
5.2)

(III) If ~K-SCFA holds for some ♦-model sequence ~K, then SCFA and ♦+
ω1

holds.
(Proposition 5.3 and 5.4)

This paper is organized as follows. In §2, we present our notation and basic
facts used in this paper. In §3, we introduce the notion of ~K-subcomplete
forcing and study its basic properties. In §4, we discuss nice iterations of ~K-
subcomplete forcings to prove (I) above. Finally, in §5, we investigate ~K-SCFA
to prove (II) and (III).
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2 Preliminaries
In this section, we present our notation and basic facts used in this paper.
Consult Kunen [8] or Jech [3] for those which are not mentioned here.

2.1 ♦-principles

In this paper, we deal with several ♦-principles. Here we recall them.

• A ♦ω1
-sequence is a sequence 〈bξ | ξ < ω1〉 such that for any B ⊆ ω1 there

are stationary many ξ < ω1 with B ∩ ξ = bξ.

• A ♦−
ω1

-sequence is a sequence 〈Bξ | ξ < ω1〉 of countable sets such that for
any B ⊆ ω1 there are stationary many ξ < ω1 with B ∩ ξ ∈ Bξ.

• A ♦∗
ω1

-sequence is a sequence 〈Bξ | ξ < ω1〉 of countable sets such that for
any B ⊆ ω1 there are club many ξ < ω1 with B ∩ ξ ∈ Bξ.

• A ♦+
ω1

-sequence is a sequence 〈Bξ | ξ < ω1〉 of countable sets such that for
any B ⊆ ω1 there is a club C ⊆ ω1 with B ∩ ξ, C ∩ ξ ∈ Bξ for all ξ ∈ C.

Let ♦ω1 (♦−
ω1

, ♦+
ω1

, respectively) be the assertion that a ♦ω1 -sequence (a
♦−

ω1
-sequence, a ♦+

ω1
-sequence, respectively) exists. Recall that ♦+

ω1
implies

♦−
ω1

, and ♦−
ω1

is equivalent to ♦ω1
. Recall also that ♦+

ω1
implies the existence

of an ω1-Kurepa tree. See Kunen [8] for proofs of these facts.

2.2 Forcing and its iteration

In this paper, we follow Miyamoto [9] for notations on forcing. A forcing notion
is a separative preorder with a largest element. Here recall that a preorder P is
separative if for any p, q ∈ P with p �P q, there is p′ ≤P p which is incompatible
with q. Recall also that a preorder P is separative if and only if for any p, q ∈ P,
p ≤P q exactly when p 
P “ q ∈ Ġ ”, where Ġ is the canonical name for a
P-generic filter.

Let P be a forcing notion. The largest element of P is denoted as 1P. For
p, q ∈ P, we let p ≡P q denote that p ≤P q and q ≤P p. A subscripts P in ≤P,

P, 1P and ≡P is often omitted when it is clear from the context.

Next, we present notations on forcing iterations. A sequence 〈Pα | α < δ〉 of
forcing notions, where δ ∈ On, is called an iteration if we have the following for
all α, β with α ≤ β < δ, where ≤α and 1α denote ≤Pα

and 1Pα
, respectively.

(i) Pα consists of functions on α.
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(ii) For all p ∈ Pβ we have p�α ∈ Pα, and 1β �α = 1α.

(iii) For any p ∈ Pα and any q ∈ Pβ , if p ≤α q �α, then p_q � [α, β) ∈ Pβ , and
p_q � [α, β) ≤β q.

(iv) For any p, q ∈ Pβ , if p ≤β q, then p�α ≤α q �α, and p ≤β p�α_q � [α, β).

(v) If α is a limit ordinal, then for any p, q ∈ Pα, p ≤α q if and only if
p�γ ≤γ q �γ for all γ < α.

For an iteration 〈Pα | α < δ〉, we let ≤α, 1α and 
α denote ≤Pα
, 1Pα

and

Pα

, respectively. Also, let Ġα denote the canonical name for a Pα-generic
filter. A subscript α in ≤α, 1α and 
α is sometimes omitted if it is clear from
the context. For p ∈ Pα, α = dom(p) will be denoted as l(p).

Suppose 〈Pα | α < δ〉 is an iteration, α ≤ β < δ, and Gα is a Pα-generic
filter over V . In V [Gα], let Pα,β be the following forcing notion, where ≤α,β

and 1α,β are its order and largest element, respectively.

(i) Pα,β := {p� [α, β) | p ∈ Pβ ∧ p�α ∈ Gα}.

(ii) p ≤α,β q if there are p′, q′ ∈ Gα such that p′_p ≤β q′_q.

(iii) 1α,β := 1β � [α, β).

Then, Pα,β is a forcing notion in V [Gα]. (See [9, Prop. 1.2].) Let Ṗα,β be a
Pα-name for Pα,β .

If Gβ is a Pβ-generic filter over V , then Gβ � α := {p � α | p ∈ Gβ} is a
Pα-generic filter over V , and Gβ � [α, β) := {p� [α, β) | p ∈ Gβ} is a (Ṗα,β)

Gβ�α-
generic filter over V [Gβ �α]. Also, if Gα is a Pα-generic filter over V , and H is
a (Ṗα,β)

Gα -generic filter over V , then

Gα ∗H := {p ∈ Pβ | p�α ∈ Gα ∧ p� [α, β) ∈ H}

is a Pβ-generic filter over V . (See [9, Prop. 1.3].) So Pβ is forcing equivalent to
Pα ∗ Ṗα,β . In particular, Pα+1 is forcing equivalent to Pα ∗ Ṗα,α+1.

2.3 Subcomplete forcing

We briefly review the notion of subcomplete forcing. Instead of the original one,
we recall a simplified version, which is called ∞-subcompleteness, introduced in
Fuchs-Switzer [2].

The notion of (∞-)subcomplete forcing involves models of set theory. First,
we give our notation on them.
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As is usual, for a first order structure M , we often identify M with its
universe. For example, if we write a ∈ M , then it means that a belongs to
the universe of M , and if we say that M is countable, then it means that the
universe of M is countable.

For structures M and N of the same language and for a function σ : M → N ,
let σ : M ≺ N denote that σ is an elementary embedding from M to N .

Let LST = {∈̃} be the language of Set Theory, where ∈̃ is a binary relation
symbol for the ∈-relation. Let L+

ST := {∈̃, P̃}, where P̃ is a unary predicate
symbol.

Suppose M is an LST-structure 〈X,E〉 or an L+
ST-structure 〈X,E, P 〉. We

say that M is a model of ZF− (ZFC−) if M satisfies all axioms of ZF (ZFC)
except for the Power Set Axiom. Here, if M is an L+

ST-structure, then the Axiom
Schemes of Replacement and Separation are applied to all L+

ST-formulas. We
say that M is transitive if X is a transitive set, and E =∈ ∩(X ×X).

For a set A and an ordinal χ, let LA
χ denote the transitive L+

ST-structure
〈Lχ[A],∈, A ∩ Lχ[A]〉.

Suppose M is a transitive L+
ST-model of ZFC−. M is said to be full if there

is a transitive LST-model N of ZF− such that M ∈ N , and M is regular in
N , where we say that M is regular in N if for any x ∈ M and any function
f : x → M with f ∈ N , we have ran(f) ∈ M .

Suppose M = 〈X,∈, P 〉 is a transitive L+
ST-model of ZFC−, and P is a forcing

notion in M . For a P-generic filter G over M , let M [G] denote the L+
ST-structure

〈X[G],∈, P 〉, where X[G] = {ȧG | ȧ is a P-name in X}. Note that M [G] is a
transitive L+

ST-model of ZFC−. Note also that if M is full, then M [G] is also
full. In fact, if N witnesses the fullness of M , then G is P-generic filter over N ,
and N [G] witnesses the fullness of M [G].

Now, we recall the notion of the subcompleteness. As we mentioned above,
we recall a simplified version, which is called the ∞-subcompleteness, introduced
by Fuchs-Switzer [2].

Definition 2.1 (Fuchs-Switzer [2]). Suppose P is a forcing notion.
For a regular cardinal θ, we say that θ verifies the ∞-subcompleteness of P

if P ∈ Hθ, and the following hold: For any A, χ, M̄ , P̄, b̄, σ, b and Ḡ, if

(i) A is a set, χ is an ordinal, and Hθ ⊆ LA
χ |= ZFC−,

(ii) M̄ is a countable transitive full L+
ST-model of ZFC− with P̄, b̄ ∈ M̄ ,

(iii) σ : M̄ ≺ LA
χ , and σ(〈P̄, b̄〉) = 〈P, b〉,

(iv) Ḡ is a P̄-generic filter over M̄ ,
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then there is p∗ ∈ P which forces that there is a σ∗ : M̄ ≺ LA
χ with σ∗(〈P̄, b̄〉) =

〈P, b〉 and σ∗[Ḡ] ⊆ Ġ, where Ġ is the canonical name for a P-generic filter.
We say that P is ∞-subcomplete if there is a regular cardinal θ which verifies

the ∞-subcompleteness of P.

In the above definition, note that σ∗ exists in the forcing extension by P,
and it may not be in the ground model.

The original subcompleteness in Jensen [4, 5] has some additional condition
which requests σ∗ to have some similarity to σ. This condition is deleted in
the ∞-subcompleteness. So the ∞-subcompleteness is weaker than the original
subcompleteness. This additional condition is used to show that all revised
countable support iterations of subcomplete forcings are subcomplete. See [4, 5]
for details. Fuchs-Switzer [2] proved that this condition is not necessary for nice
iterations developed by Miyamoto [9]. Namely, they proved the following.

Fact 2.2. All nice iterations of ∞-subcomplete forcings are ∞-subcomplete.

It should be noted here that a similar result for subproper forcings were obtained
by Miyamoto [10] before.

Also, as far as we know, ∞-subcomplete forcings have all important prop-
erties of subcomplete forcings. For example, ∞-subcomplete forcings add no
reals, preserve stationary subsets of ω1 and preserve ♦ω1

.
Now, we turn our attention to the forcing axiom for ∞-subcomplete forcings.

By Fact 2.2 and the standard argument for the consistency proof of forcing
axioms, we can prove its consistency.

Definition 2.3. The (∞-)Subcomplete Forcing Axiom, denoted as (∞-)SCFA,
is the following assertion.

For any (∞-)subcomplete forcing notion P and any family D of dense
subsets of P with |D| ≤ ω1, there is a filter g on P such that g∩D 6= ∅
for any D ∈ D.

Fact 2.4 (Switzer-Fuchs [2]). Assume there is a supercompact cardinal. Then
there is a forcing extension in which ∞-SCFA holds.

In fact, since ∞-subcomplete forcings preserves ♦ω1
, if ♦ω1

holds in the
ground model, then so is in the extension. Note also ∞-SCFA implies SCFA

since all subcomplete forcing notions are ∞-subcomplete.
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3 ~K-subcomplete forcing
In this section, we introduce the notion of ~K-subcomplete forcing and study
its basic properties. The ~K-subcompleteness is defined for an adequate model
sequence ~K, which is a guessing sequence on ω1. Roughly speaking, the ~K-
subcompleteness is obtained by restricting M̄ and Ḡ in the ∞-subcompleteness
to those captured by ~K.

In §3.1, we introduce the notion of adequate model sequences and study its
basic properties. In §3.2, we introduce the notion of ~K-subcomplete forcings
and study its basic properties.

3.1 Adequate model sequences

First, we introduce the notions of adequate model sequences and ♦-model se-
quences.

Definition 3.1. A sequence ~K = 〈Kξ | ξ < ω1〉 is called an adequate model
sequence if

(i) for each ξ < ζ, Kξ is a transitive LST-model ZFC−, ξ ∈ Kξ, and ξ is
countable in Kξ,

(ii) for any B ⊆ ω1, there are stationary many ξ < ω1 with B ∩ ξ ∈ Kξ.

An adequate model sequence ~K = 〈Kξ | ξ < ω1〉 is called a ♦-model sequence if

(iii) Kξ is countable for each ξ < ω1.

Note that if ~K = 〈Kξ | ξ < ω1〉 satisfies (i) of the above definition, and
Hω1

⊆ Kξ for all ξ < ω1, then ~K is an adequate model sequence.
The ~K-subcompleteness is defined for an adequate model sequence ~K. Before

we give its definition, we study basic properties of adequate model sequences.

Lemma 3.2. (1) A ♦-model sequence exists if and only if ♦ω1 holds.

(2) Suppose ~K = 〈Kξ | ξ < ω1〉 is a sequence of transitive LST-models of
ZFC− with ξ ∈ Kξ. Then for any R ⊆ ω1 × ω1, there are B ⊆ ω1 and a
club C ⊆ ω1 such that for any ξ ∈ C if B ∩ ξ ∈ Kξ, then R∩ (ξ× ξ) ∈ Kξ.

(3) Suppose ~K = 〈Kξ | ξ < ω1〉 is an adequate model sequence, and let F be
the set of all D ⊆ ω1 such that {ξ < ω1 | B ∩ ξ ∈ Kξ} ∩ C ⊆ D for some
B ⊆ ω1 and some club C ⊆ ω1. Then, F is a normal filter over ω1.
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Proof. (1) If there is a ♦-model sequence ~K, then ~K witnesses ♦−
ω1

, which is
equivalent to ♦ω1

. Conversely, suppose ♦ω1
holds. Let 〈bξ | ξ < ω1〉 be a

♦ω1
-sequence, and for each ξ < ω1 take a countable Kξ such that bξ, ξ ∈ Kξ ≺

〈Hω1
,∈〉. Then 〈Kξ | ξ < ω1〉 is a ♦-model sequence.

(2) Let Γ : ω1 × ω1 → ω1 be the Gödel paring function. Then, let B := Γ[R],
and let C be the set of all ξ < ω1 such that Γ[ξ × ξ] = ξ. Note that C is club
in ω1. If ξ ∈ C and B ∩ ξ ∈ Kξ, then R ∩ (ξ × ξ) = Γ−1[B ∩ ξ] ∈ Kξ since
ξ,B ∩ ξ ∈ Kξ. So B and C are as desired.

(3) We only prove the normality of F . The other properties are easily checked.
Suppose {Dη | η < ω1} ⊆ F . We show that D := ∆η<ω1

Dη ∈ F . For
each η < ω1, take Bη ⊆ ω1 and a club Cη ⊆ ω1 witnessing Dη ∈ F . Let
R := {〈η, ζ〉 ∈ ω1 × ω1 | ζ ∈ Bη}. By (3), we can take B ⊆ ω1 and a club
C ′ ⊆ ω1 such that if ξ ∈ C ′ and B ∩ ξ ∈ Kξ, then R ∩ (ξ × ξ) ∈ Kξ. Let
C := C ′ ∩∆η<ω1Cη.

Then, A and C witnesses that D ∈ F : Assume ξ ∈ C and B ∩ ξ ∈ Kξ. We
must show that ξ ∈ Dη for all η < ξ. Fix η < ξ. Since ξ ∈ C ′ and B ∩ ξ ∈ Kξ,
we have R∩ (ξ× ξ) ∈ Kξ. Then, Bη ∩ ξ = {ζ | 〈η, ζ〉 ∈ R∩ (ξ× ξ)} ∈ Kξ. Also,
ξ ∈ Cη since ξ ∈ C. So ξ ∈ Dη.

A definition and a lemma below are important in ~K-subcomplete forcings.

Definition 3.3. Suppose ~K = 〈Kξ | ξ < ω1〉 is an adequate model sequence.
We call M̄ a ~K-good model if M̄ is a transitive full L+

ST-model of ZFC− such
that M̄ ∈ KωM̄

1
, and M̄ is countable in KωM̄

1
.

Lemma 3.4. Let ~K = 〈Kξ | ξ < ω1〉 be an adequate model sequence. Suppose
M = LA

χ for some set A and some regular cardinal χ, and Hω1 ∈ M . Let
a ∈ M . Then there are a ~K-good model M̄ and σ : M̄ ≺ M with a ∈ ran(σ).

Proof. We may assume that A ⊆ Lχ[A]. Take a regular cardinal λ > χ, and let
N := 〈Lλ[A],∈〉. Note that M ∈ N |= ZFC−. Moreover, M is regular in N :

Suppose x ∈ M , f : x → M and f ∈ N . We show that f ∈ M . Take N ′ ≺ N

with f,A, χ ∈ N ′ and α := N ′ ∩ χ ∈ χ. Note that f ⊆ X since f ∈ N ′ ≺ N ,
and |f |N = |x|N ∈ N ′ ∩ χ ⊆ N ′. Let π : N ′ → N ′′ be the transitive collapse.
Then f = π(f) ∈ N ′′. Note also that N ′′ = 〈Lβ [π(A)],∈〉 for some β < χ and
π(A) = A ∩ Lα[A] ∈ M . So N ′′ ⊆ M . Hence f ∈ M .

We will find N̄ and τ such that

(i) N̄ is a countable transitive LST-model of ZFC−, N̄ ∈ KωN̄
1

, and N̄ is
countable in KωN̄

1
,
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(ii) τ : N̄ ≺ N , and a,M ∈ ran(σ).

(We do not require that N̄ is full.) If such N̄ and τ are found, then M̄ := τ−1(M)

and σ := τ � M̄ witnesses the lemma: M̄ is full since M̄ = τ−1(M) ∈ N̄ |=
ZFC−, and M̄ is regular in N̄ by the regularity of M in N . Note also that
ωM
1 = ωN

1 = ω1 since Hω1 ∈ M , and so ωM̄
1 = ωN̄

1 . Then M̄ and σ are as
desired clearly.

We construct N̄ and τ satisfying (i) and (ii). Take N ′ ≺ N of cardinality
ω1 with ω1 ∪ {a,M} ⊆ N ′. Take a bijection f : ω1 → N ′ with f(0) = {a,M},
and let E be the pull-back of ∈ ∩(N ′ ×N ′) by f . So f is an isomorphism from
J := 〈ω1, E〉 to N ′.

By Lemma 3.2 (3) and the adequateness of ~K, there are stationary many
ξ < ω1 such that J � ξ ∈ Kξ. Note also that there are club many ξ < ω1 such
that J � ξ ≺ J and f [ξ] ∩ ω1 = ξ. So we can take ξ > 0 such that J � ξ ∈ Kξ,
J �ξ ≺ J and f [ξ] ∩ ω1 = ξ.

Let π : J �ξ → N̄ be the transitive collapse. Also, let τ := f ◦π−1 : N̄ → N .
We claim that N̄ and τ are as desired. Clearly, they satisfy (ii).

We check (i). Note that N̄ ∈ Kξ since J � ξ ∈ Kξ, and Kξ is a transitive
model of ZFC−. Moreover N̄ is countable in Kξ since ξ is countable in Kξ. So it
suffices to prove that ξ = ωN̄

1 . For this, note that τ : N̄ ∼= N �f [ξ] is the inverse
of the transitive collapse of N �f [ξ]. Then, ωN̄

1 = f [ξ]∩ωN
1 = f [ξ]∩ω1 = ξ.

3.2 ~K-subcomplete forcings

First, we introduce the notion of ~K-subcomplete forcings.
As we mentioned before, it is obtained from the ∞-subcompleteness by re-

stricting M̄ and Ḡ to those captured by ~K. Note that if M̄ is a ~K-good model,
and P̄ is a forcing notion in M̄ , then there is a P̄-generic filter Ḡ ∈ KωM̄

1
over

M̄ .
In the definition below, we allow to use a parameter a ∈ Hθ for the verifica-

tion of the ~K-subcompleteness. We will use this to prove that ~K-subcompleteness
is immutable with respect to the forcing equivalence (Lemma 3.6). Later, we will
also make use of it to prove that some concrete forcing notion is ~K-subcomplete
in the proof of Lemma 5.7.

Definition 3.5. Suppose P is a forcing notion and ~K = 〈Kξ | ξ < ζ〉 is an
adequate model sequence.

For a regular cardinal θ with P ∈ Hθ and for a ∈ Hθ, we say that θ and a

verify the ~K-subcompleteness of P if the following hold: For any A, χ, M̄ , P̄,
b̄, σ, b and Ḡ, if
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(i) A is a set, χ is an ordinal, and Hθ ⊆ LA
χ |= ZFC−,

(ii) M̄ is a ~K-good model, and P̄, b̄ ∈ M̄ ,

(iii) σ : M̄ ≺ LA
χ , a ∈ ran(σ), and σ(〈P̄, b̄〉) = 〈P, b〉,

(iv) Ḡ is a P̄-generic filter over M̄ with Ḡ ∈ KωM̄
1

,

then there is p∗ ∈ P which forces that there is σ∗ : M̄ ≺ LA
χ with σ∗(〈P̄, b̄〉) =

〈P, b〉 and σ∗[Ḡ] ⊆ Ġ, where Ġ is the canonical name for a P-generic filter.
We say that P is ~K-subcomplete if there are a regular cardinal θ with P ∈ Hθ

and a ∈ Hθ which verify the ~K-subcompleteness of P.

We make some remarks on the above definition.

(1) Every ∞-subcomplete forcing notion is ~K-subcomplete for any adequate
model sequence ~K.

(2) Suppose ~K = 〈Kξ | ξ < ω1〉 is an adequate model sequence with Hω1 ⊆
Kξ for all ξ < ω1. Then, the ~K-subcompleteness is the same as ∞-
subcompleteness except for that we allow to use a parameter a in the
~K-subcompleteness.

(3) If θ and a verify the ~K-subcompleteness of P, then any regular cardinal
θ′ ≥ θ together with a verify the ~K-subcompleteness of P.

(4) Suppose θ and a verify the ~K-subcompleteness of P, and A, χ, M̄ , P̄, σ,
Ḡ satisfy (i)–(iv) of Definition 3.5. Suppose also that b̄0, b̄1, . . . , b̄n−1 ∈
M̄ and σ(b̄i) = bi for all i < n, where n < ω. Then, by letting b̄ :=

〈b̄0, b̄1, . . . , b̄n−1〉, we can take p∗ which forces the existence of σ∗ : M̄ ≺ LA
χ

with σ∗(P̄) = P, σ∗(b̄i) = bi for all i < n and σ∗[Ḡ] ⊆ Ġ.

(5) Let P, A, χ, M̄ , σ, Ḡ, p∗ be as in Definition 3.5. Suppose G is a P-generic
filter over V with p∗ ∈ G, and in V [G] let σ∗ : M̄ ≺ LA

χ be such that
σ∗(P̄) = P and σ∗[Ḡ] ⊆ G. Then, in V [G], σ∗ can be naturally extended
to σ∗∗ : M̄ [Ḡ] ≺ LA

χ [G] with σ∗∗(Ḡ) = G by letting σ∗∗( ˙̄xḠ) := σ∗( ˙̄x)G.

In the rest of this section, we observe basic properties of ~K-subcomplete
forcings. First, we prove that the ~K-subcompleteness is preserved by forcing
equivalence.

Lemma 3.6. Let ~K be an adequate model sequence. If P is a ~K-subcomplete
forcing notion, and P′ is a forcing notion which is forcing equivalent to P, then
P′ is ~K-subcomplete, too.
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Proof. It suffices to show that if there is a dense embedding between forcing
notions P and P′, then P is ~K-subcomplete exactly when P′ is ~K-subcomplete.
Suppose P and P′ are forcing notions, and there is a dense embedding d : P → P′.
We only show that if P′ is ~K-subcomplete, then so is P. The proof of the other
direction is similar and is left to the readers. Let ~K = 〈Kξ | ξ < ω1〉.

Take θ and a′ which verify ~K-subcompleteness of P′. We may assume a :=

{a′,P′, d} ∈ Hθ. We show that θ and a verify the ~K-subcompleteness of P.
Suppose A, χ, M̄ , P̄, b̄, σ, b and Ḡ satisfy (i)–(iv) of Definition 3.5. We find
p∗ ∈ P as in Definition 3.5. Let M := LA

χ .
Note that P′, d ∈ ran(σ) since a ∈ ran(σ). Let 〈P̄′, d̄〉 := σ−1(〈P′, d〉). Then

d̄ : P̄ → P̄′ is a dense embedding in M̄ . Let Ḡ′ be the filter on P̄′ generated
by d̄[Ḡ]. Then Ḡ′ is a P̄′-generic filter over M̄ with Ḡ′ ∈ KωM̄

1
. Since θ and a′

verify the ~K-subcompleteness of P′, we can take p′ ∈ P′ forcing the existence of
σ′ : M̄ → M with σ′(〈P̄, b̄, P̄′, d̄〉) = 〈P, b,P′, d〉 and σ′[Ḡ′] ⊆ Ġ′, where Ġ′ is the
canonical name for a P′-generic filter. Take p∗ ∈ P with d(p∗) ≤ p′.

We show that p∗ is as desired. Suppose G is a P-generic filter over V with
p∗ ∈ G. Working in V [G], we show that there is σ∗ : M̄ ≺ M with σ∗(〈P̄, b̄〉) =
〈P, b〉 and σ∗[Ḡ] ⊆ G. Let G′ be the filter on P′ generated by d[G]. Then G′

is a P′-generic filter over V with p′ ∈ G′. By the choice of p′, we can take
σ∗ : M̄ ≺ M with σ∗(〈P̄, b̄, P̄′, d̄〉) = 〈P, b,P′, d〉 and σ∗[Ḡ′] ⊆ Ġ′. Then,

σ∗[Ḡ] = σ∗[d̄−1[Ḡ′]] ⊆ d−1[G′] = G .

So σ∗ is as desired.

Next, recall that ∞-subcomplete forcings add no reals. We observe that this
can be generalized to ~K-subcomplete forcings.

Lemma 3.7. Suppose that ~K is an adequate model sequence. Then any ~K-
subcomplete forcing adds no reals. In particular, every ~K-subcomplete forcing
preserves ω1.

Proof. Suppose P is a ~K-subcomplete forcing notion, p ∈ P and ẋ is a P-name
for a real. It suffices to find p∗ ≤ p forcing that ẋ ∈ V .

Take a regular cardinal θ and a ∈ Hθ verifying the ~K-subcompleteness of P.
We may assume that ω1 < θ and ẋ ∈ Hθ. Take a set A and a regular cardinal
χ such that Hθ ⊆ LA

χ . Let M := LA
χ .

By Lemma 3.4, we can take a ~K-good model M̄ and σ : M̄ ≺ M such that
and a,P, p, ẋ ∈ ran(σ). Let 〈P̄, p̄, ˙̄x〉 := σ−1(〈P, p, ẋ〉). Since M̄ is countable in
KωM̄

1
, we can take a P̄-generic filter Ḡ over M̄ with p̄ ∈ Ḡ ∈ KωM̄

1
. Let x := ˙̄xḠ.

11



Since θ and a verify the ~K-subcompleteness of P, we can take p∗ ∈ P which
forces the existence of σ∗ : M̄ ≺ M with σ∗(〈P, ˙̄x, p̄〉) = 〈P, ẋ, p〉 and σ∗[Ḡ] ⊆ Ġ,
where Ġ is the canonical name for a P-generic filter. p∗ forces (v)–(vii) of
Definition 3.5 for b̄ = 〈p̄, ˙̄x〉. We claim that p∗ is as desired.

Note that p∗ 
 “ p = σ∗(p̄) ∈ σ∗[Ḡ] ⊆ Ġ ”. So p∗ 
 “ p ∈ Ġ ”. Thus p∗ ≤ p.
We prove that p∗ 
 “ ẋ ∈ V ”. Suppose G is a P-generic filter over V with

p∗ ∈ G. We show that ẋG ∈ V . In V [G], take σ∗ : M̄ ≺ M with σ∗(〈P, ˙̄x, p̄〉) =
〈P, ẋ, p〉 and σ∗[Ḡ] ⊆ G. Then, σ∗ can be extended to σ∗∗ : M̄ [Ḡ] ≺ M [G] with
σ∗∗(Ḡ) = G. Then, ẋG = σ∗∗( ˙̄xḠ) = σ∗∗(x). But σ∗∗(x) = x since x is a real.
So, ẋG = x ∈ V .

Next, we show that ~K-subcomplete forcings preserve the adequateness of
~K. The latter statement of the next lemma corresponds to the fact that ∞-
subcomplete forcings preserve ♦ω1

.

Lemma 3.8. If ~K is an adequate model sequence, then ~K remains to be an
adequate model sequence in any ~K-subcomplete forcing extensions. If ~K is a ♦-
model sequence, then ~K remains to be a ♦-model sequence in any ~K-subcomplete
forcing extensions.

Proof. The latter statement follows from the former. We prove the former.
Let ~K = 〈Kξ | ξ < ω1〉 be an adequate model sequence and P be a ~K-

subcomplete forcing notion. Suppose p ∈ P, Ḃ and Ċ are P-names, and p forces
that Ḃ ⊆ ω1 and Ċ is club in ω1. It suffices to find p∗ ≤ p and ξ < ω1 such that
p∗ forces Ḃ ∩ ξ ∈ Kξ and ξ ∈ Ċ.

Take a regular cardinal θ and a ∈ Hθ verifying the ~K-subcompleteness of
P. We may assume Ḃ, Ċ ∈ Hθ. Take a set A and a regular cardinal χ with
M := LA

χ ⊇ Hθ.
By Lemma 3.4, we can take a ~K-good model M̄ and σ : M̄ ≺ M with

a,P, p, Ḃ, Ċ ∈ ran(σ). Let ξ := ωM̄
1 , and let 〈P̄, p̄, ˙̄B, ˙̄C〉 := σ−1(〈P, p, Ḃ, Ċ〉).

Take a P̄-generic filter over M̄ with p̄ ∈ Ḡ ∈ Kξ. Then, there is p∗ ∈ P which
forces the existence of σ∗ : M̄ ≺ M with σ∗(〈P̄, p̄, ˙̄B, ˙̄C〉) = 〈P, p, Ḃ, Ċ〉 and
σ∗[Ḡ] ⊆ Ġ, where Ġ is the canonical name for a P-generic filter. We claim that
p∗ and ξ are as desired. We can prove that p∗ ≤ p by the same argument as in
the proof of Lemma 3.7.

Suppose G is a P-generic filter over V with p∗ ∈ G. Let B := ḂG and
C := ĊG. In V [G], we show that B ∩ ξ ∈ Kξ and ξ ∈ C. Take σ∗∗ : M̄ [Ḡ] ≺
M [G] with σ∗∗(〈P̄, p̄, ˙̄B, ˙̄C〉) = 〈P, p, Ḃ, Ċ〉 and σ∗∗(Ḡ) = G. Let B̄ := ˙̄BḠ and
C̄ := ˙̄CḠ. Then, σ∗∗(B̄) = B, σ∗∗(C̄) = C, and σ∗∗(ξ) = ω1. Then, B̄ = B ∩ ξ.

12



But B̄ ∈ Kξ since B̄ ∈ M̄ [Ḡ] ∈ Kξ. So B∩ξ ∈ Kξ. Also, C̄ = C∩ξ. Moreover C̄
is unbounded in ξ by the elementarity of σ∗. Then ξ ∈ C since C is closed.

Recall that all ∞-subcomplete forcings preserve stationary subsets of ω1.
We prove that ~K-subcomplete forcings preserve stationary subsets of ω1 if ~K is
strongly adequate in the sense below.

Definition 3.9. An adequate model sequence ~K = 〈Kξ | ξ < ω1〉 is called a
strongly adequate model sequence if for any B ⊆ ω1, there are club many ξ < ω1

with B ∩ ξ ∈ Kξ.

Lemma 3.10. Suppose ~K is a strongly adequate model sequence, and P is a
~K-subcomplete forcing notion. Then P preserves stationary subsets of ω1.

To prove this, we use the following modification of Lemma 3.4.

Lemma 3.11. Let ~K = 〈Kξ | ξ < ω1〉 be a strongly adequate model sequence.
Suppose M = LA

χ for some set A and some regular cardinal χ, Hω1
∈ M , and

a ∈ M . Let S be a stationary subset of ω1. Then, there are a ~K-good model M̄
with ωM̄

1 ∈ S and σ : M̄ ≺ M with a ∈ ran(σ).

Proof. The proof is almost the same as Lemma 3.4. In the fifth paragraph of
the proof of Lemma 3.4, we took ξ < ω1 such that J � ξ ∈ Kξ, J � ξ ≺ J and
f [ξ] ∩ ω1 = ξ. Note that we can take such ξ ∈ S under the assumption of this
lemma that ~K is strongly adequate and S is stationary. Then, the rest of the
proof is exactly the same as that of Lemma 3.4.

Proof of Lemma 3.10. Let S be a stationary subset of ω1. Suppose p ∈ P, Ċ is
a P-name and p forces Ċ to be a club subset of ω1. We find p∗ ≤ p and ξ ∈ S

such that p 
 “ ξ ∈ Ċ ”.
Take a regular cardinal θ and a ∈ Hθ verifying the ~K-subcompleteness of

P. We may assume Ċ ∈ Hθ. Take a set A and a regular cardinal χ with
M := LA

χ ⊇ Hθ.
By Lemma 3.11, we can take a ~K-good model M̄ with ξ := ωM̄

1 ∈ S and
σ : M̄ ≺ M with a,P, p, Ċ ∈ ran(σ). Let 〈P̄, p̄, ˙̄C〉 := σ−1(〈P, p, Ċ〉). Take a
P̄-generic filter over M̄ with p̄ ∈ Ḡ ∈ Kξ. Then, there is p∗ ∈ P which forces the
existence of σ∗ : M̄ ≺ M with σ∗(〈P̄, p̄, ˙̄C〉) = 〈P, p, Ċ〉 and σ∗[Ḡ] ⊆ Ġ, where
Ġ is the canonical name for a P-generic filter.

We can prove that p∗ ≤ p by the same argument as in the proof of Lemma
3.7. Recall also that ξ ∈ S. Moreover, we can prove that p∗ 
 “ ξ ∈ Ċ ” by the
same argument as in the proof of Lemma 3.8. So p∗ and ξ are as desired.
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We have proved that ~K-subcomplete forcings preserve stationary subsets of
ω1 if ~K is strongly adequate. But this is not true for an adequate ~K in general.
In fact, a ~K-subcomplete forcing C ~K,B in §5 does not preserve stationary subsets
of ω1 if ~K is not strongly adequate, and B is its witness. See a remark after the
proof of Proposition 5.4.

4 Nice iterations of ~K-subcomplete forcings
In this section, we discuss nice iterations of ~K-subcomplete forcings. Here an
iteration of ~K-subcomplete forcings means the following.

Definition 4.1. Suppose ~K is an adequate model sequence. An iteration 〈Pα |
α ≤ δ〉 is called an iteration of ~K-subcomplete forcings if


α “ ~K is an adequate model sequence, and Ṗα,α+1 is ~K-subcomplete ”

for all α < δ.

We prove the following.

Theorem 4.2. Suppose ~K is an adequate model sequence, and 〈Pα | α ≤ δ〉 is
a nice iteration of ~K-subcomplete forcings. Then Pδ is ~K-subcomplete.

The proof of this theorem is almost the same as the analogous theorem for
∞-subcomplete forcings (Fact 2.2). But, we give the proof for the completeness
of this paper.

In §4.1, we briefly review nice iterations developed by Miyamoto [9]. In §4.2,
we prove Theorem 4.2.

4.1 Nice iterations

Here we review nice iterations introduced by Miyamoto [9]. Key notions in nice
iterations are those of nested antichains and their mixture.

We begin with the notion of nested antichains. In the definition below, S is
essentially a tree of height ω consisting of conditions in

⋃
{Pα | α < δ}: Sn is

the n-th level of S, and sucnS(s) is the set of immediate successors of s ∈ Sn.

Definition 4.3. Let 〈Pα | α < δ〉 be an iteration. A nested antichain in
〈Pα | α < δ〉 is a pair S = 〈〈Sn | n < ω〉, 〈sucnS | n < ω〉〉 such that

(i) S0 = {s0} for some s0 ∈
⋃

α<δ Pα,

(ii) Sn ⊆
⋃

α<δ Pα for all n < ω,

14



(iii) sucnS : Sn → P(Sn+1) and Sn+1 =
⋃
{sucn(s) | s ∈ Sn} for each n < ω,

(iv) if s ∈ Sn, and s′ ∈ sucnS(s), then l(s) ≤ l(s′), and s′ � l(s) ≤ s,

(v) if s ∈ Sn, then 〈s′ � l(s) | s′ ∈ sucnS(s)〉 is a maximal antichain below s in
Pl(s).

For a nested antichain S, we let 〈Sn | n < ω〉 and 〈sucnS | n < ω〉 denote those
such that S = 〈〈Sn | n < ω〉, 〈sucnS | n < ω〉〉. We write s ∈ S for s ∈

⋃
n<ω Sn.

Scripts n and S in sucnS will sometimes be omitted if they are clear from the
context.

Suppose S is a nested antichain in some iteration. A unique element of S0

is called a root of S and denoted as rt(S). Suppose n ≤ n′ < ω, s ∈ Sn and
s′ ∈ Tn′ . We write (s, n) ≤S (s′, n′) if there is a sequence 〈sm | n ≤ m ≤ n′〉
such that sn = s, sn′ = s′ and sm+1 ∈ sucmS (sm) for all m.

Next, we recall mixtures of nested antichains. A nested antichain S can
be identified with some condition in an iteration, and such condition is called
a mixture of S. Here we adopt the following definition of mixtures, which [9,
Proposition 2.5] proved to be equivalent to the original definition. The author
believes that the following can be more intuitively understood.

Definition 4.4. Let S be a nested antichain in an iteration 〈Pα | α < δ〉 with
rt(S) = s0. For β < δ and p ∈ Pβ, we say that p is a mixture of S up to β if
the following holds, where Ġα is the canonical name for a Pα-generic filter.

(i) p ≡ s0 �β if β < l(s0), and p� l(s0) ≡ s0 if β ≥ l(s0).

(ii) For any s ∈ S, s�β ≤ p if β < l(s), and s ≤ p� l(s) if β ≥ l(s).

(iii) For any s ∈ S with l(s) ≤ β and any s′ ∈ suc(s),

• s′ � l(s)_p� [l(s), β) ≡ s′ �β if β < l(s′),

• s′ � l(s)_p� [l(s), l(s′)) ≡ s′ if β ≥ l(s′).

(iv) For any α < β and any u ∈ Pα, if u forces the following (∗), then we have
u_1β � [α, β) ≡ u_p� [α, β).

(∗) There is a sequence 〈sn | n < ω〉 ∈
∏

n<ω Sn such that l(sn) < α,
sn+1 ∈ suc(sn), and sn ∈ Ġl(sn) for all n < ω.

For a limit ordinal β ≤ δ and a sequence p on β, we say that p is (S, β)-nice if
p�β′ ∈ Pβ′ , and p�β′ is a mixture of S up to β′ for all β′ < β.
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Note that if p ∈ Pβ is a mixture of a nested antichain S up to β, then q ∈ Pβ

is a mixuture of S up to β if and only if p ≡ q. For p being (S, β)-nice, we do
not request p to be in Pβ .

Now, we recall the notion of nice iterations.

Definition 4.5. An iteration 〈Pα | α < δ〉, where δ ∈ On, is called a nice
iteration if it satisfies the following.

(i) For any α < δ with α + 1 ≤ δ, if p ∈ Pα, and q̇ is a Pα-name such
that p 
α “ q̇ ∈ Ṗα,α+1 ”, then there is r ∈ Pα+1 such that r �α ≡ p and
p 
α “ r � [α, α+ 1) ≡ q̇ ”.

(ii) For any limit ordinal β < δ, Pβ consists of all sequences p on β such that
p is (S, β)-nice for some nested antichain S in 〈Pα | α < β〉.

[9, Lemma 2.9] proved that if 〈Pα | α < β〉 is an iteration for a limit ordinal
β, then we can extend it to an iteration 〈Pα | α ≤ β〉 so that Pβ satisfies
(ii) of the above definition. So we can recursively construct a nice iteration
as usual: Suppose Q is a class function, and Q(P) is a P-name of a forcing
notion for all forcing notion P. Then for any ordinal δ, we can construct a nice
iteration 〈Pα | α < δ〉 such that 
α “ Ṗα,α+1 is forcing equivalent to Q(Pα) ” for
all α < δ.

In the rest of this subsection, we recall technical notions developed in [9],
which will be used to prove Theorem 4.2.

First, we recall the notion of hooking.

Definition 4.6. Suppose S and T are nested antichains in some iteration. We
say that S hooks T and write S∠T if for any n < ω and any s ∈ Sn there is
t ∈ Tn+1 such that l(t) ≤ l(s) and s� l(t) ≤ t.

It is easy to see that if S and T are nested antichains with S∠T , and p, q

are mixtures of S, T up to some ordinal, respectively, then p ≤ q. We will use
the following lemma. See [9] for the proof.

Lemma 4.7 ([9, Lemma 2.11]). Let 〈Pα | α ≤ δ〉 is a nice iteration for a limit
ordinal δ. Suppose p, q ∈ Pδ, and S, s1 satisfies the following.

(i) S is a nested antichain in 〈Pα | α < δ〉, and s ∈ S1.

(ii) p is a mixture of S up to δ.

(iii) q � l(s1) ≤ s1, and q ≤ p.
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Then there is a nested antichain T in 〈Pα | α < δ〉 such that q is a mixture of
T up to δ and T∠S.

Next, we recall the notion of fusion structures.

Definition 4.8. Let 〈Pα | α ≤ δ〉 be an iteration for a limit ordinal δ, and let
S be a nested antichain in 〈Pα | α < δ〉. A fusion structure of S is a sequence
〈q(s,n), T (s,n) | n < ω, s ∈ Sn〉 which satisfies the following properties for all
n < ω and s ∈ Sn.

(i) T (s,n) is a nested antichain in 〈Pα | α < δ〉.

(ii) q(s,n) is a mixture of T (s,n) up to δ.

(iii) l(rt(T (s,n))) = l(s), and s ≤ rt(T (s,n)).

(iv) If s′ ∈ sucnS(s), then T (s′,n+1)∠T (s,n), and so q(s
′,n+1) ≤ q(s,n).

The following is a key lemma on a fusion structure. See [9] for the proof.

Lemma 4.9 ([9, Proposition 3.5]). Let 〈Pα | α ≤ δ〉 be an iteration for a limit
ordinal δ. Suppose S is a nested antichain in 〈Pα | α < δ〉, and 〈q(s,n), T (s,n) |
n < ω, s ∈ Sn〉 is a fusion structure of S. Assume Gδ is a Pδ-generic filter over
V containing a mixture of S up to δ. Then, in V [G], there is 〈sn | n < ω〉 ∈∏

n<ω Sn such that sn+1 ∈ sucnS(sn) and q(sn,n) ∈ Gδ for all n < ω.

4.2 Nice iterations of ~K-subcomplete forcings

Here we prove Theorem 4.2. It will be proved by induction the length δ of the
iteration 〈Pα | α ≤ δ〉. In fact, as is usual, we prove something stronger by
induction. We use the following notation.

Definition 4.10. Let ~K = 〈Kξ | ξ < ω1〉 be an adequate model sequence and
~P = 〈Pα | α ≤ δ〉 be an iteration. Suppose θ is a regular cardinal with Pδ ∈ Hθ,
a ∈ Hθ, β < δ. We say that θ and a verify ~K-subcompleteness of Pδ relative to
β if the following holds: For any A, χ, b, M̄ , b̄, ~̄P = 〈P̄ᾱ | ᾱ ≤ δ̄〉, β̄, Ḡβ̄, Ḡδ̄

and p if

(i) A is a set, χ is an ordinal, Hθ ⊆ LA
χ |= ZFC−, and b ∈ LA

χ ,

(ii) M̄ is a ~K-good model,

(iii) b̄, ~̄P, β̄ ∈ M̄ , ~̄P is an iteration in M̄ , and β̄ < δ̄,

(iv) Ḡδ̄ is a P̄δ̄-generic filter over M̄ with Ḡδ̄ ∈ Kξ, and Ḡβ̄ = Ḡδ̄ � β̄,
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(v) p ∈ Pβ, and p forces the existence of σ : M̄ ≺ LA
χ with a ∈ ran(σ),

σ(〈~̄P, β̄, b̄〉) = 〈~P, β, b〉 and σ[Ḡβ̄ ] ⊆ Ġβ,

then there is p∗ ∈ Pδ such that p∗ � β = p, and p∗ forces the existence of
σ∗ : M̄ ≺ LA

χ with σ∗(〈~̄P, b̄〉) = 〈~P, b〉 and σ∗[Ḡδ̄] ⊆ Ġδ.

We prove the following proposition by induction δ. Note that Theorem 4.2
follows from this proposition for α = 0.

Proposition 4.11. Let ~K be a model sequence and ~P = 〈Pα | α ≤ δ〉 be a nice
iteration of ~K-subcomplete forcings. Suppose β < δ. Then there are a regular
cardinal θ and a ∈ Hθ verifying the ~K-subcompleteness of Pδ relative to β.

Proof. We prove the proposition by induction on the length δ of an iteration ~P.
We have nothing to do for δ = 0. Suppose δ > 0, and the proposition holds for
all δ′ < δ. We prove the proposition for δ.

Case 1. δ is a limit ordinal.

By the induction hypothesis, for each α, γ with α < γ < δ, take θα,γ and
aα,γ which verify the ~K-subcompleteness of Pγ relative to α. Let θ be a regular
cardinal such that θ > θα,γ for all α, γ. Also, let a := 〈aα,γ | α < γ < δ〉. We
show that θ and a verify the ~K-subcompleteness of Pδ relative to β.

Suppose A, χ, b, M̄ , b̄, ~̄P = 〈P̄ᾱ | ᾱ ≤ δ̄〉, β̄, Ḡβ̄ , Ḡδ̄ and p satisfies (i)–(v)
of Definition 4.10. We will show that there is p∗ ∈ Pδ as in Definition 4.10. Let
M := LA

χ and ξ := ωM̄
1 . For each ᾱ < δ̄, let Ḡᾱ := Ḡδ̄ � ᾱ. Take an enumeration

〈c̄n | n < ω〉 of M̄ with c̄0 = ∅ and an enumeration 〈r̄n | n < ω〉 of Ḡδ̄ such that
r̄0 is the largest element 1̄δ̄ in P̄δ̄.

We will construct a nested antichain S in 〈Pα | α < δ〉 with rt(S) = p and a
fusion structure 〈q(s,n), T (s,n) | n < ω, s ∈ Sn〉 of S together with q̄(s,n), T̄ (s,n),
β̄(s,n), σ̇(s,n), c(s,n) for n < ω and s ∈ Sn so that

(i) q̄(s,n) ∈ Ḡδ̄, q̄(s,n) ≤ r̄n, and T̄ (s,n), β̄(s,n) ∈ M̄ ,

(ii) σ̇(s,n) is a Pl(s)-name, and s forces that

• σ̇(s,n) : M̄ ≺ M , a ∈ ran(σ̇(s,n)), and σ̇(s,n)(〈~̄P, b̄〉) = 〈~P, b〉,

• σ̇(s,n)(〈q̄(u,m), T̄ (u,m), c̄m〉) = 〈q(u,m), T (u,m), c(u,m)〉 for all (u,m) ≤S

(s, n),

• σ̇(s,n)(β̄(s,n)) = l(s), and σ̇(s,n)[Ḡβ̄(s,n) ] ⊆ Ġl(s).
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First, assuming the above objects are constructed, we show that there is p∗

as desired. Since ~P is a nice iteration, we can take a mixture p∗ ∈ Pδ of S.
Note that p∗ � β ≡ rt(S) = p. So we may assume p∗ � β = p. Suppose Gδ is a
Pδ-deneric filter over V with p∗ ∈ Gδ. Working in V [Gδ], we show that there is
σ∗ : M̄ ≺ M with σ∗(〈~̄P, b〉) = 〈~P, b〉, and σ∗[Ḡδ̄] ⊆ Gδ.

By Lemma 4.9, we can take 〈sn | n < ω〉 ∈
∏

n<ω Sn such that sn+1 ∈
sucnS(sn) and q(sn,n) ∈ Gδ for all n < ω. Then, define σ∗ : M̄ → M by
σ∗(c̄n) := c(sn,n). We show that σ∗ is as desired.

Let σn := (σ̇(sn,n))Gδ�l(sn) for each n < ω. Note that, σ∗ and σn coincides on
{c̄m | m ≤ n} for all n < ω. Then it follows that σ∗ : M̄ ≺ M , since σn : M̄ ≺ M

for all n < ω, and M̄ = {c̄m | m < ω}. Moreover, since σn(〈~̄P, b̄〉) = 〈~P, b〉, we
also have that σ∗(〈~̄P, b̄〉) = 〈~P, b〉. Finally, note that σ∗(q̄(sn,n)) = q(sn,n) for all
n < ω. Then σ∗(r̄n) ≥ σ∗(q̄(sn,n)) = q(sn,n) ∈ Gδ for all n < ω. So σ∗[Ḡδ̄] ⊆ Gδ

since Ḡδ̄ = {r̄n | n < ω}.
We start to construct the above objects. By recursion on n, we construct

Sn and q(s,n), T (s,n), q̄(s,n), T̄ (s,n), β̄(s,n), σ̇(s,n), c(s,n) for all s ∈ Sn. (sucnS will
be constructed when we construct Sn+1.) We must construct them so that they
satisfy (i),(ii) above and (iii)–(vi) below. (iii)–(vi) are properties assuring that S
will be a nested antichain with rt(S) = p and that 〈q(s,n), T (s,n) | n < ω, s ∈ Sn〉
will be a fusion structure of S.

(iii) S0 = {p}, and Sn+1 =
⋃

s∈Sn
sucnS(s) ⊆

⋃
α<δ Pα.

(iv) If s′ ∈ sucnS(s), then l(s′) ≥ l(s), and s′ � l(s) ≤ s. Also, for all s ∈ Sn,
〈s′ � l(s) | s′ ∈ sucnS(s)〉 is a maximal antichain below s in Pl(s).

(v) T (s,n) is a nested antichain in 〈Pα | α < δ〉 with l(rt(T (s,n))) = l(s) and
s ≤ rt(T (s,n)), and q(s,n) is a mixture of T (s,n) up to δ.

(vi) If s′ ∈ sucnS(s), then T (s′,n+1)∠T (s,n).

First, suppose n = 0. Let S0 := {p} and q(p,0) := 1β . Define T (p,0) by
T

(p,0)
k := {1β} and suck

T (p,0)(1β) = {1β} for all k < ω. Note that (iii) and
(v) hold for n = 0 and s = p. Next, let σ̇(p,0) be a Pβ-name of σ in (v) of
Definition 4.10. Also, let q̄(p,0) := 1̄δ̄, and define T̄ (p,0) by T̄

(p,0)
k := {1̄β̄} and

suck
T̄ (p,0)(1̄β̄) := {1̄β̄} for all k < ω, where 1̄β̄ is the largest element of P̄β̄ . Let

β̄(p,0) := β̄ and c(s,0) := ∅. Clearly, (i) and (ii) hold for n = 0 and s = p. (iv)
and (vi) are irrelevant for n = 0. This completes the construction for n = 0.

Next, suppose Sn and q(s,n), T (s,n), q̄(s,n), T̄ (s,n), β̄(s,n), σ̇(s,n), c(s,n) for all
s ∈ Sn have been constructed. We construct sucnS , Sn+1 and q(s

′,n+1), T (s′,n+1),
q̄(s

′,n+1), T̄ (s′,n+1), β̄(s′,n+1), σ̇(s′,n+1), c(s′,n+1) for all s′ ∈ Sn+1.
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For s ∈ Sn, let Es be the collection of all candidates of elements of sucnS(s).
That is, let Es be the set all s′ ∈

⋃
α<δ Pα such that we have the following for

some q′, T ′, q̄′, T̄ ′, β̄′, σ̇′ and c′.

(vii) l(s′) ≥ l(s), and s′ � l(s) ≤ s.

(viii) T ′ is a nested antichain in 〈Pα | α < δ〉 with l(rt(T ′)) = l(s′) and s′ ≤
rt(T ′), and q′ is a mixuture of T ′ up to δ.

(ix) T ′∠T (s,n),

(x) q̄′ ∈ Ḡδ̄, q̄′ ≤ r̄n+1, and T̄ ′, β̄′ ∈ M̄ .

(xi) σ̇′ is a Pl(s′)-name, and s′ forces that

• σ̇′ : M̄ ≺ M , a ∈ ran(σ̇′), and σ̇′(〈~̄P, b̄〉) = 〈~P, b〉,

• σ̇′(〈q̄(u,m), T̄ (u,m), c̄m〉) = 〈q(u,m), T (u,m), c(u,m)〉 for all (u,m) ≤S

(s, n), and σ̇′(〈q̄′, T̄ ′, c̄n+1〉) = 〈q′, T ′, c′〉,

• σ̇′(β̄′) = l(s′), and σ̇′[Ḡβ̄′ ] ⊆ Ġl(s′).

For s ∈ Sn, let Ds := {s′ � l(s) | s′ ∈ Es}. We claim the following.

Claim 1. For any s ∈ Sn, Ds is dense below s in Pl(s).

Proof of Claim 1. Suppose s ∈ Sn. Take an arbitrary u ≤ s in Pl(s). We find
s′ ∈ Es with s′ � l(s) ≤ u.

By (i),(ii),(v) for n and s, in M̄ , T̄ (s,n) is a nested antichain in 〈P̄ᾱ | ᾱ < δ̄〉,
and q̄(s,n) is a mixture of T̄ (s,n). Since q̄(s,n) ∈ Ḡδ̄, we can take t̄ ∈ T̄

(s,n)
1 with

t̄ ∈ Ḡl(t̄). Then, we can take q̄′ ∈ Ḡδ̄ such that q̄′ ≤ q̄(s,n), r̄n+1 and q̄′ � l(t̄) ≤ t̄,
since q̄(s,n), r̄n+1 ∈ Ḡδ̄ and t̄ ∈ Ḡl(t̄). By Lemma 4.7, in M̄ , we can take a nested
antichain T̄ ′ in 〈P̄ᾱ | ᾱ < δ̄〉 such that T̄ ′∠ T̄ (s,n), and q̄′ is a mixture of T̄ ′ up
to δ̄. In M̄ , let t̄′ := rt(T̄ ′) and β̄′ := l(t̄′). Note that t̄′ ∈ Ḡβ̄′ since a mixture
q̄′ of T̄ ′ belongs to Ḡδ̄.

Take v ≤ u in Pl(s) and q′, T ′, c′, β′ ∈ M such that

(xii) v 
l(s) “ σ̇(s,n)(〈q̄′, T̄ ′, c̄n+1, β̄
′〉) = 〈q′, T ′, c′, β′〉 ”.

Note that

(xiii) v 
l(s) “ al(s),β′ ∈ σ̇(s,n) ”

since v forces that l(s), β′, a = 〈aα,γ | α < γ < δ〉 ∈ ran(σ̇(s,n)).
Recall that θ and al(s),β′ verify the ~K-subcompleteness of Pβ′ relative to

l(s). Then, by (ii),(xii),(xiii), we can take s′ ∈ Pβ′ with s′ � l(s) = v and Pβ′ -
name σ̇′ satisfying (xi). Note that s′ ≤ rt(T ′) since rt(T̄ ′) = t̄′ ∈ Ḡβ̄′ , and
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s′ forces that rt(T ) = σ̇′(rt(T̄ ′)) ∈ σ̇′[Ḡβ̄′ ] ⊆ Ġl(s′). Then, s′ � l(s) ≤ u, and
q′, T ′, q̄′, T̄ ′, β̄′, σ̇′, c′ witnesses that s′ ∈ Es. So s′ is as desired. � (Claim 1)

For each s ∈ Sn, we construct sucnS(s) and q(s
′,n+1), T (s′,n+1), q̄(s

′,n+1),
T̄ (s′,n+1), β̄(s′,n+1), σ̇(s′,n+1), c(s

′,n+1) for all s′ ∈ sucnS(s). Fix s ∈ Sn. By
the claim above, we can take As ⊆ Ds which is a maximal antichain below
s in Pl(s). For each u ∈ As, choose s′u ∈ Es with s′u � l(s) = u. Then, let
sucnS(s) := {s′u | u ∈ As}. Moreover, for each s′ ∈ sucnS(s), let q(s

′,n+1),
T (s′,n+1), q̄(s′,n+1), T̄ (s′,n+1), β̄(s′,n+1), σ̇(s′,n+1), c(s′,n+1) be q′, T ′, q̄′, T̄ ′, β̄′,
σ̇′ and c′ witnessing s′ ∈ Es.

Finally, let Sn+1 :=
⋃

s∈Sn
sucnS(s). We have constructed sucnS , Sn+1 and

q(s
′,n+1), T (s′,n+1), q̄(s′,n+1), T̄ (s′,n+1), β̄(s′,n+1), σ̇(s′,n+1), c(s′,n+1) for all s′ ∈

Sn+1. Clearly, they are as desired.
This completes the proof for Case 1. � (Case 1)

Case 2. δ is a successor ordinal.

Let γ := δ − 1. By the induction hypothesis, we can take a regular cardinal
θ′ and a′ ∈ Hθ′ which verify the ~K-subcompleteness of Pγ relative to β. Since
1γ forces that Ṗγ,δ is ~K-subcomplete, we can also take a regular cardinal θ′′ and
a Pγ-name ȧ′′ such that 1γ forces θ′′ and ȧ′′ to verify the ~K-subcompleteness of
Ṗγ,δ. Let θ := max{θ′, θ′′} and a := 〈a′, ȧ′′〉. We show that θ and a verify the
~K-subcompleteness of Pδ relative to β.

Suppose A, χ, b, M̄ , b̄, ~̄P = 〈P̄ᾱ | ᾱ ≤ δ̄〉, β̄, Ḡβ̄ , Ḡδ̄, p satisfies (i)–(v)
of Definition 4.10. We will show that there is p∗ as in Definition 4.10. Let
M := LA

χ , γ̄ := δ̄ − 1 and Ḡγ̄ := Ḡδ̄ � γ̄.
Note that for a′ ∈ ran(σ) for σ as in (v) of Definition 4.10. Since θ and a′

verify the ~K-subcompleteness of Pγ relative to β, we can take p′ ≤ Pγ such that
p′ � β = p and p′ forces the existence of σ′ : M̄ ≺ M with σ′(〈~̄P, b̄〉) = 〈~P, b〉,
a ∈ ran(σ′) and σ′[Ḡγ̄ ] ⊆ Ġγ .

Let P̄γ̄,δ̄ be the evaluation of ˙̄Pγ̄,δ̄ by Ḡγ̄ , and let H̄γ̄ := Ḡδ̄ � [γ̄, δ̄). Note
that H̄γ̄ is a P̄γ̄,δ̄-generic filter over M̄ [Ḡγ̄ ]. Also, let Ḣγ be a Pγ-name of the
canonical name for a Ṗγ,δ-generic filter. We claim the following.

Claim 2. There is p∗ ∈ Pδ such that p∗ �γ = p′ and

p∗ �γ 
γ “ p∗ � [γ, δ) 
γ,δ Φ ” ,

where Φ is the statement that there is τ : M̄ [Ḡγ̄ ] ≺ M [Ġγ ] with τ(〈~̄P, b̄, Ḡγ̄〉) =
〈~P, b, Ġγ〉 and τ [H̄γ̄ ] ⊆ Ḣγ .
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Proof of Claim 2. By (i) of Definition 4.5, it suffices to prove that

p′ 
γ “ ∃q ∈ Ṗγ,δ ( q 
γ,δ Φ) ” .

Suppose Gγ is a Pγ-generic filter over V with p′ ∈ Gγ . Let Pγ,δ := (Ṗγ,δ)
Gγ .

Working in V [Gγ ], we find q ∈ Pγ,δ which forces Φ.
Let a′′ := (ȧ′′)Gγ . Recall that θ and a′′ verify the ~K-subcompleteness of

Pγ,δ. We want to use this to find q. For this, we make some preliminaries.
Since p′ ∈ Gγ , there is σ′ : M̄ ≺ M with a ∈ ran(σ′), σ′(〈~̄P, b̄〉) = 〈~P, b〉

and σ′[Ḡγ̄ ] ⊆ Gγ . Then, σ′ can be naturally extended to σ′′ : M̄ [Ḡγ̄ ] ≺ M [Gγ ].
with σ′′(Ḡγ̄) = Gγ . Note that

(i) a′′ ∈ ran(σ′′), and σ′′(P̄γ̄,δ̄) = Pγ,δ.

Let B := ({0} × A) ∪ ({1} × Gγ) and N := LB
χ . Then it is easy to check

that M [Gγ ] = 〈Lχ[A][Gγ ],∈, A ∩ Lχ[A]〉 and N = 〈Lχ[B],∈, B ∩ Lχ[B]〉 are
equivalent in the sense that Lχ[A][Gγ ] = Lχ[B], A ∩ Lχ[A] is definable in N ,
and B ∩ Lχ[B] is definable in M [Gγ ]. Note also that

(ii) HV [Gγ ]
θ ⊆ LB

χ |= ZFC−.

By the elementarity of σ′, M̄ = LĀ
χ̄ for some set Ā and some ordinal χ̄. Let

B̄ := ({0} × Ā) ∪ ({1} × Ḡ) and N̄ := LB̄
χ̄ . Then M̄ [Ḡγ̄ ] and N̄ are equivalent

in the same sense as above. Then, we have that

(iii) σ′′ : N̄ ≺ N .

Next, we note that

(iv) N̄ is a ~K-good model,

(v) H̄γ̄ is a P̄γ̄,δ̄-generic filter over N̄ with H̄γ̄ ∈ KωN̄
1

.

We only check that N̄ , H̄γ̄ ∈ KωN̄
1

, and N̄ is countable in KωN̄
1

. The other
properties are easily checked. Note that N̄ , H̄γ̄ ∈ KωM̄

1
and N̄ is countable in

KωM̄
1

, since M̄, Ḡγ̄ , Ḡδ̄ ∈ KωM̄
1

and M̄ is countable in KωM̄
1

. So it suffices to
check that ωN̄

1 = ωM̄
1 . For this, note that Pγ preserves the adequateness of ~K

by the definition of an iteration of ~K-subcomplete forcings. So Pγ preserves ω1.
Then, by the elementarity of σ′, we have ωN̄

1 = ωM̄
1 .

Since θ and a′′ verify the ~K-subcompleteness of Pγ,δ, by (i)–(v) above, there
is q ∈ Pγ,δ which forces that there is τ : N̄ ≺ N with τ(〈~̄P, b̄〉) = 〈~P, b〉 and
τ [H̄γ̄ ] ⊆ Ḣγ . Then q is as desired. � (Claim 2)
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Let p∗ be as in Claim 2. We show that p∗ is as desired. First, note that
p∗ � β = p′ � β = p. Suppose Gδ is a Pδ-generic filter over V with p∗ ∈ Gδ. In
V [Gδ], we find σ∗ : M̄ ≺ M with σ∗(〈~̄P, b̄〉) = 〈~P, b〉 and σ∗[Ḡδ̄] ⊆ Ġδ.

Note that Gγ := Gδ �γ is Pγ-generic filter over V , and Hγ := Gδ � [γ, δ) is a
(Ṗγ,δ)

Gγ -generic filter over V [Gγ ]. Moreover, p∗ � γ ∈ Gγ , and p∗ � [γ, δ) ∈ Hγ .
Then, by the choice of p∗, in V [Gδ] = V [Gγ ][Hγ ], there is τ : M̄ [Ḡγ̄ ] ≺ M [Gγ ]

with τ(〈~̄P, b̄, Ḡγ̄〉) = 〈~P, b, Gγ〉 and τ [H̄γ̄ ] ⊆ Hγ . Let σ∗ := τ �M̄ .
Clearly, σ∗ : M̄ ≺ M and σ∗(〈~̄P, b̄〉) = 〈~P, b〉. Note that τ [Ḡγ̄ ] ⊆ Gγ and

τ [H̄γ̄ ] ⊆ Hγ . Note also that Ḡδ̄ = Ḡγ̄ ∗ H̄γ̄ and Gδ = Gγ ∗Hγ . So σ∗[Ḡδ̄] ⊆ Gδ.
Thus σ∗ is as desired. � (Case 2)

This completes the proof of Proposition 4.11.

5 ~K-SCFA
In this section, we study the forcing axiom for ~K-subcomplete forcing notions.

Definition 5.1. Suppose ~K is an adequate model sequence. Then the ~K-
Subcomplete Forcing Axiom, ~K-SCFA, is the following assertion:

For any ~K-subcomplete forcing notion P and any family D of dense
subsets of P with |D| ≤ ω1, there is a filter g on P with g ∩D 6= ∅
for any D ∈ D.

First, we show the consistency of ~K-SCFA for some ♦-model sequence ~K.
Using Lemma 3.8 and Theorem 4.2, this can be proved by the standard argu-
ment.

Theorem 5.2. Assume there is a supercompact cardinal. Then there is a forcing
extension in which ~K-SCFA holds for some ♦-model sequence ~K.

Proof. By replacing V with its forcing extension by <ω12, we may assume that
♦ω1 holds in V . Take a ♦-model sequence ~K in V .

In V , let κ be a supercompact cardinal, and take a Laver function F : κ →
Vκ. Then, we can construct a nice iteration 〈Pα | α ≤ κ〉 so that we have the
following for all α < κ.

• If 1α forces that ~K is a ♦-model sequence, and F (α) is a Pα-name for a ~K-
subcomplete forcing axiom, then 1α forces that Ṗα,α+1 is forcing equivalent
to F (α).

• Otherwise, 1α forces that Ṗα,α+1 is a trivial forcing notion.
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Using Lemma 3.8 and Theorem 4.2, by induction on α ≤ κ, we can prove
that Pα is ~K-subcomplete, and 
α “ ~K is a ♦-model sequence ”.

Let Gκ be a Pκ-generic filter over V . Then ~K is a ♦-model sequence in
V [Gκ]. Moreover, by the same argument as the proof of the consistency of PFA,
we can prove that ~K-SCFA holds in V [Gκ]. This proof is left to the readers.

We turn our attention to consequences of ~K-SCFA. First, recall that all
subcomplete forcing notions are ~K-subcomplete. So we have the following.

Proposition 5.3. Suppose ~K-SCFA holds for some adequate model sequence
~K. Then SCFA holds.

Next, we prove that ~K-SCFA for a ♦-model sequence ~K implies ♦+
ω1

.

Proposition 5.4. Suppose ~K is an adequate model sequence, and ~K-SCFA
holds. Then ~K is strongly adequate. If ~K is a ♦-model sequence in addition,
then ~K is a ♦+

ω1
-sequence.

For this, we use the following forcing notion.

Definition 5.5. For an adequate model sequence ~K = 〈Kξ | ξ < ω1〉 and
B ⊆ ω1, let C ~K,B be the following forcing notion.

(i) C ~K,B consists of all closed bounded p ⊆ ω1 such that B ∩ ξ, p∩ ξ ∈ Kξ for
all ξ ∈ p.

(ii) p ≤ q in C ~K,B if p is an end-extension of q.

In the following two lemmata, we observe basic properties of C ~K,B .

Lemma 5.6. Suppose ~K = 〈Kξ | ξ < ω1〉 is an adequate model sequence, and
B ⊆ ω1. Then, Dξ := {p ∈ C ~K,B | max(p) ≥ ξ} is dense in P for any ξ < ω1.

Proof. Suppose p ∈ C ~K,B and ξ < ω1. We must find q ≤ p with q ∈ Dξ. By
Lemma 3.2 (4), there is ζ < ω1 such that ξ,max(p) < ζ and B ∩ ζ, p ∈ Kζ . Let
q := p ∪ {ζ}. Then, q ∈ C ~K,B by the choice of ζ and the fact that p ∈ C ~K,B .
Moreover q ≤ p clearly, and q ∈ Dξ since max(q) = ζ > ξ.

Lemma 5.7. Suppose ~K = 〈Kξ | ξ < ω1〉 is an adequate model sequence, and
B ⊆ ω1. Then C ~K,B is ~K-subcomplete.

Proof. Let P := C ~K,B . Let θ be a sufficiently large regular cardinal, and let
a := B. We show that θ and a verify the ~K-subcompleteness of P. Suppose A,
χ, M̄ , P̄, b̄, σ, b and Ḡ satisfies (i)–(iv) of Definition 3.5. It suffices to find p∗ ∈ P
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which forces that σ[Ḡ] ⊆ Ġ, where Ġ is the canonical name for a P-generic filter.
(Then p∗ forces that σ∗ := σ is as in Definition 3.5.)

Let ξ := ωM̄
1 and B̄ := σ−1(B). Note that B̄ = B ∩ ξ since the critical point

of σ is ξ, and σ(ξ) = ω1. Note also that σ � P̄ is an identity since P ⊆ Hω1
. In

particular, σ[Ḡ] = Ḡ.
Let p′ :=

⋃
Ḡ. Then p′ is club in ξ by Lemma 5.6. Moreover, B ∩ η, p′ ∩ η ∈

Kη for all η ∈ p′ since Ḡ = σ[Ḡ] ⊆ P. Note also that B ∩ ξ = B̄ ∈ M̄ ⊆ Kξ and
p′ ∈ Kξ. Then p∗ := p′ ∪ {ξ} ∈ P, and p∗ is a lower bound of Ḡ = σ[Ḡ]. So p∗

forces that σ[Ḡ] ⊆ Ġ.

Now, we prove Proposition 5.4.

Proof of Proposition 5.4. We only prove the latter statement. The proof of the
former is the same. Let ~K = 〈Kξ | ξ < ω1〉 be a ♦-model sequence, and suppose
~K-SCFA holds. We show that ~K is a ♦+

ω1
-sequence.

Take an arbitrary B ⊆ ω1. We find a club C ⊆ ω1 with B ∩ ξ, C ∩ ξ ∈ Kξ

for all ξ ∈ C. For each ξ < ω1, let Dξ := {p ∈ C ~K,B | max(p) ≥ ξ}. By Lemma
5.6, each Dξ is dense in C ~K,B . By ~K-SCFA, we can take a filter g on C ~K,B with
g ∩Dξ 6= ∅ for any ξ < ω1. Let C :=

⋃
g.

Then C is a club subset of ω1. Moreover B ∩ ξ, C ∩ ξ ∈ Kξ for all ξ ∈ C

since g ⊆ C ~K,B . So C is as desired.

Here we make a remark on the preservation of stationary subsets of ω1 by ~K-
subcomplete forcings. If ~K is an adequate model sequence, and ~K-SCFA holds,
then ~K-subcomplete forcings preserve stationary subsets of ω1 by Lemma 3.11
and Proposition 5.4. But, in general, ~K-subcomplete forcings may not preserve
stationary subsets of ω1: Suppose ~K is not strongly adequate, and let B be
a subset of ω1 such that S := {ξ < ω1 | B ∩ ξ /∈ Kξ} is stationary. C ~K,B is
~K-subcomplete by Lemma 5.7. But C ~K,B adds a club C ⊆ ω1 with C ∩ S = ∅
by Lemma 5.6.

By Theorem 5.2 and Proposition 5.3 and 5.4, we have the following corollary.

Corollary 5.8. Assume there is a supercompact cardinal. Then there is a
forcing extension in which SCFA and ♦+

ω1
hold.
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