(P2-4)

Novel vortex in $PrOs_4Sb_{12}$

Y. Karaki¹, K. Kubota¹, H. Ishimoto¹ H. Sugawara², and H. Sato³

¹Institute for Solid State Physics, University of Tokyo, Kashiwa, 277-8581 ²Faculty of Integrated Arts and Sciencies, Tokushima University, Tokushima 770-8502 ³Graduate School of Science, Tokyo Metropolitan University, Hachioji, 192-0397

A number of experiments show evidence for unconventional superconductivity in PrOs₄Sb₁₂, a heavy-fermion material . In particular, muon spin relaxation experiment reveals broken time reversal symmetry below Tc(~1.8K).[1] As observed in superfluid ³He, superconductivity(fluidity) with multiple order-parameter has a possibility to have various type of vortices.[2] To study the properties of vortices in PrOs₄Sb₁₂, we have measured the hysteresis loop of magnetization in PrOs₄Sb₁₂ at various temperatures. Examples of hysteresis loops are shown in Fig.1. The temperature dependence of the hysteresis(ΔM) at zero field is obtained from the hysteresis loops and shown in Fig. 2. Below 150mK, drastic decrease of ΔM is observed. According to the Bean model, ΔM is proportional to the critical current Ic or pinning force of vortices. Linear temperature dependence of Ic is expected at sufficiently low temperatures(<T/Tc~ 0.1) according to Anderson-Kim theory[3]. However, the drastic reduction of pinning force at such low temperatures implies an apperance of a new type of vortices with non-singular core. We will also present results of lower critical field which are closely related the energy of the vortices.

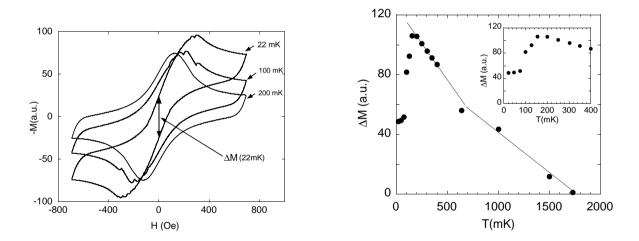


Figure 1: Hysteresis loops of magneization be-Figure 2: Temperature dependence of low 200mK. ΔM is defined as the difference in hysteresis(ΔM) at zero field. The inset M at zero field during increasing and decreasing shows low temperature part. We confirm the of field. Use the increase of ΔM as decrease temperature at 0.6K reported by T.Cichorek et al.[4]

- [1] Y. Aoki et al., Phys. Rev. Lett. 91, 067003 (2003)
- [2] O.V. Lounasmaa and E. Thuneberg, Proc. Natl. Acad. Sci. USA, 96,7760(1999)
- [3] P.W.Anderson and Y.B.Kim, Rev. Mod. Phys. 36,39(1964)
- [4] T.Chihorek et al., Phys. Rev. Lett. 95, 107002(2005)