(P2-31)

The magnetoresistance of ferromagnet CePd₂Ga₃ under high pressure

T. Kanemasa¹, A. Miyake¹, T. Kagayama¹, K. Shimizu¹, K. Tezuka² and T. Ebihara²

¹KYOKUGEN, Osaka University, Toyonaka, 560-8531 ²Dept. of Phys, Shizuoka Univ., Shizuoka 422-8529, Japan

It was reported that Kondo compound CePd₂Ga₃ is ferromagnet with $T_{\rm C} = 6.3$ K at ambient pressure and changes to antiferromagnet at about 2.3 GPa and shows no magnetic ordering at about 5 GPa [1]. But the nature of the ferro-to-antiferromagnetic transition has not been cleared. To investigate this transition, we have measured the magnetic field dependence of the resistivity of CePd₂Ga₃ under high pressure at 0.1 K. We used a diamond-anvil cell as a pressure apparatus and a ³He/⁴He dilution refrigerator. $T_{\rm C}$ decreased with pressure. Figure 1 shows the field dependence of the resistivity of CePd₂Ga₃. The negative magnetoresistance (MR) was observed up to 1.9 GPa and become larger at higher pressure. But MR turned into positive at 2.1 GPa which may correspond to the ferro-to-antiferromagnetic transition. The positive MR was quite large, suggesting an enhancement of magnetic instability. And then, at higher pressure, the MR turned into negative again.

Figure 1: The magnetic field dependence of the resistivity of CePd₂Ga₃ at various pressures at 0.1 K. The vertical axis is the normalized resistivity $\Delta \rho / \rho_0 = [\rho(B) - \rho_0] / \rho_0$.

[1] T. Burghardt *et al.*, J.Phys.: Condens. Matter **17** (2005) 871.