The magnetoresistance of ferromagnet CePd$_2$Ga$_3$ under high pressure

T. Kanemasa1, A. Miyake1, T. Kagayama1, K. Shimizu1, K. Tezuka2 and T. Ebihara2

1KYOKUGEN, Osaka University, Toyonaka, 560-8531
2Dept. of Phys, Shizuoka Univ., Shizuoka 422-8529, Japan

It was reported that Kondo compound CePd$_2$Ga$_3$ is ferromagnet with $T_C = 6.3$ K at ambient pressure and changes to antiferromagnet at about 2.3 GPa and shows no magnetic ordering at about 5 GPa [1]. But the nature of the ferro-to-antiferromagnetic transition has not been cleared. To investigate this transition, we have measured the magnetic field dependence of the resistivity of CePd$_2$Ga$_3$ under high pressure at 0.1 K. We used a diamond-anvil cell as a pressure apparatus and a 3He/4He dilution refrigerator. T_C decreased with pressure. Figure 1 shows the field dependence of the resistivity of CePd$_2$Ga$_3$. The negative magnetoresistance (MR) was observed up to 1.9 GPa and become larger at higher pressure. But MR turned into positive at 2.1 GPa which may correspond to the ferro-to-antiferromagnetic transition. The positive MR was quite large, suggesting an enhancement of magnetic instability. And then, at higher pressure, the MR turned into negative again.

![Figure 1: The magnetic field dependence of the resistivity of CePd$_2$Ga$_3$ at various pressures at 0.1 K. The vertical axis is the normalized resistivity $\Delta \rho/\rho_0 = [\rho(B)-\rho_0]/\rho_0$.](image)