(P2-27)

Heavy Fermion State in the f^2 Anderson Lattice with Singlet-Triplet Crystal-Field Levels

\underline{Y} . \overline{O} no and K. Mitsumoto

Department of Physics, Niigata University, Niigata, 950-2181

The crystal-field levels of the $Pr^{3+}(4f^2)$ ion in the filled skutterudite $PrOs_4Sb_{12}$ are considered to be the ground state Γ_1 singlet and the first excited state $\Gamma_4^{(2)}$ triplet with a small excitation energy ~ 8K. To elucidate the effect of the crystal-field levels on the heavy fermion behavior, we study the two-orbital periodic Anderson model at half-filling where the average f-electron number per site is 2 [1]. The calculations are based on the dynamical mean-field theory where the effective impurity Anderson model is solved using the exact diagonalization method. The renormalization factor Z is obtained as a function of the intraorbital Coulomb interaction U, the interorbital Coulomb interaction U' (we set U = U'), the exchange (Hund's rule) coupling J and the crystal-field splitting Δ . In the absence of c-f hybridization $V_{cf} = 0$, the ionic ground state is triplet for $J > \Delta$, while it is intraorbital singlet for $|J| < \Delta$ and interorbital singlet for $J < -\Delta$. In the strong correlation regime with $V_{cf} \neq 0$, the heavy fermion state with $m^*/m = Z^{-1} \gtrsim 100$ is realized for $|J| > \Delta$, while it is not realized for $|J| < \Delta$. When the singlet ground state and the triplet excited state form a quasi-quartet $(J \sim \Delta)$, the system shows a moderate enhancement of the effective mass $m^*/m \sim 10-50$, which is consistent with the experimental observation in PrOs₄Sb₁₂.

[1] Y. Ōno and K. Mitsumoto: *Proceedings of SCES 2005*, Physica B (in press)

Figure 1: Mass enhancement factor.

Figure 2: Local moment.