(P2-24)

Low-*T* Properties of $PrMg_3$ with the Cubic Γ_3 Ground State

<u>H. Tanida¹</u>, S. Takagi¹, H. S. Suzuki²

¹Graduate School of Science, Tohoku University, Sendai 980-8578, Japan ²National Institute for Materials Science, Tsukuba 305-0047

An intermetallic compound $PrMg_3$ with the cubic Fe₃Al-type structure, in which Pr^{3+} occupies the cubic site, was reported in previous studies as a Γ_3 ground-state (GS) system with the crystalline-electric-field (CEF) level scheme of $\Gamma_3(0 \text{ K})-\Gamma_4(56 \text{ K})-\Gamma_1(135 \text{ K})-\Gamma_5(183 \text{ K})[1]$. The cubic Γ_3 is a non-magnetic, non-Kramers doublet, which has no magnetic dipoles but electric quadrupoles (O_{20}, O_{22}) and a magnetic octupole (T_{xyz}).

We have investigated the low-T properties of $PrMg_3$ on single crystals by the magnetic susceptibility $\chi(T)$ and the specific heat $C_{\rm P}(T)[2]$. $\chi(T)$ increases monotonically with decreasing T below room T and tends to saturate below ~ 20 K, suggesting basically Van-Vleck-like behavior at low T. $C_{\text{P,PrMg3}}(T)$ exhibits no anomaly down to 0.54 K that suggests a phase transition. As shown in Fig. 1, The 4f contribution $C_{4f}(T)$ has a huge broad anomaly with a peak ~1.8 J/mol K at 0.9 K and a large $C_{4f}(T)/T=2.8$ J/mol K² at 0.54 K. No apparent NFL behavior was observed in $C_{4f}(T)$ down to 0.54 K. Weak H_{ext} -dependence of the $C_{4f}(T)$ anomaly even under $H_{\text{ext}}=9 \text{ T}/[001]$ suggests its basically nonmagnetic origin. $S_{4f}(T)$, the 4f contribution to the entropy, approaches $R \ln 2$ around ~ 5 K, where it increases slowly. Therefore, it can be concluded from the basically Van-Vleck-like $\chi(T)$ and the low-T $C_{4f}(T)$ anomaly that the CEF GS is the Γ_3 doublet. This conclusion is consistent with the CEF level scheme deduced from the neutron measurement. Then, the observed low- $T C_{4f}(T)$ anomaly is reasonably ascribed to the GS Γ_3 multipole degrees of freedom. The anomaly, however, is not described as a collection of the 2-ch. Kondo impurities, as can be seen in Fig. 1. Rather, it is more similar to that for the 1-ch. Kondo model with $T_{\rm K,1-ch}=1.3$ K, including its weak $H_{\rm ext}$ -dependence. The low-T $C_{4f}(T)$ anomaly suggests that the Γ_3 multipole degrees of freedom are quenched by forming a strongly correlated electronic state through the c - f hybridization.

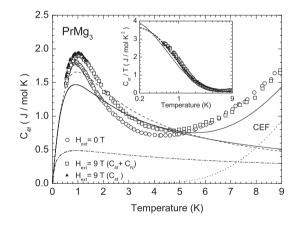


Figure 1: The low-T part of $C_{4f}(T)$ of a single crystal of PrMg₃ for $H_{\text{ext}}=0$ T (circles) and 9 T//[001] (squares). The dot-dashed line and the thin solid line represent the specific heat of the 2-ch. ($T_{\text{K},2-\text{ch}}=1.5$ K) and 1-ch. ($T_{\text{K},1-\text{ch}}=1.3$ K) impurity Kondo model. The dotted line is the calculated Schottky contribution from the CEF excited states. The thick solid line corresponds to the sum of the 1-ch. Kondo and the CEF-excited-states contributions.

- (1) R. M. Galera *et al.*, J.Magn. & Magn. Mater. **23** (1981) 317.
- (2) H. Tanida et al., to be published in J. Phys. Soc. Jpn. (2006) July.