Pressure effect to quadrupole transition on PrPb₃

M. Kano¹, N. Kurita¹, M. Hedo¹, Y. Uwatoko¹, S. W. Tozer², H. S. Suzuki³, T. Onimaru¹ and T. Sakakibara¹

¹Institute for Solid State Physics, University of Tokyo, Kashiwa, 277-8581

The rare-earth intermetallic compound PrPb₃ has the AuCu₃-type cubic structure, and its crystalline field ground state is a Γ_3 non-Kramers doublet which is orbitally degenerated. It is characterized by carrying the quadrupole moments of O_2^0 and O_2^2 , not having a magnetic degrees of freedom, also an anomaly due to antiferroquadrupolar (AFQ) is observed at 0.4 K in the specific heat [1]. Recently, neutron diffraction technique revealed the existence of spatially modulated AFQ structure in PrPb₃ by Onimaru et al [2]. It suggests that an indirect RKKY-type interaction between quadrupole moments should exist. With the aim of controlling this interaction, we carried out the electrical resistivity measurements on PrPb₃ under high pressure up to 8 GPa. As a result, a gradual rise of the kink temperature (T_Q) is observed with increasing pressure and it suddenly disappears around 5 GPa. In the presentation, reasons for this phenomenon as the pressure effect will be argued.

- [1] M. Niksch et al.: Helv. Phys. Acta **55** (1982) 688
- [2] T. Onimaru et al.: Phys. Rev. Lett. **94** (2005) 197201

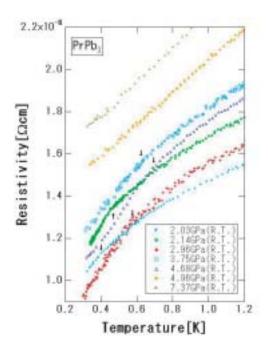


Figure 1: Temperature dependence of resistivity on PrPb₃ at various pressures.

²National High Magnetic Field Laboratory, Tallahassee, 31320-3706

³National Institute for Material Science, Tsukuba, 305-0047