(P2-19)

NQR/NMR study on the heavy-Fermi liquid properties of $YbFe_4Sb_{12}$

A. Yamamoto¹, <u>S. Wada¹</u>, I. Shirotani² and C. Sekine²

¹Department of Material Science, Graduate School of Science and Technology, Kobe University, Nada, Kobe 657-8501

²Faculty of Engineering, Muroran Institute of Technology, Mizumoto, Muroran 050-8585

A heavy-lanthanide skutterudite compound YbFe₄Sb₁₂ is in an intermediate valence state and has a rather large Sommerfeld coefficient $\gamma(0) \sim 140 \text{ mJ/mol}\cdot\text{K}^2$ [1]. The magnetic susceptibility χ at high temperatures above ~50 K follows the Curie Weiss-law with an effective magnetic moment of $\simeq 3.09 \mu_B$ [1]. However, the temperature dependence of χ at low temperatures largely depends on the difference in the sample preparation procedures [1-5]. To elucidate the electronic and magnetic properties at a microscopic level, we have performed NQR and NMR measurements by using a YbFe₄Sb₁₂ specimen synthesized at high pressure that has the intermediate χ plateau around 50 K.

Figure 1: Sb-NQR spectrum in $YbFe_4Sb_{12}$ at 4.2 K.

Figure 2: Temperature dependence of the Sb spin-lattice relaxation rate in $YbFe_4Sb_{12}$

The Sb-NQR spectrum in YbFe₄Sb₁₂ observed at 4.2 K is shown in Fig. 1, which is very similar to that observed in LaFe₄Sb₁₂ [6]. The values of the nuclear spin-lattice relaxation rate $1/T_1$ are protted in Fig. 2 against temperature. $1/T_1T$ exhibits a Curie Weiss-type increase down to ~10 K followed by stauration behavior at low temperatures similar to those in LaFe₄Sb₁₂. The most important feature is that the values of $1/T_1T$ are less than those in LaFe₄Sb₁₂, suggesting that low-energy spin fluctuations in the RFe_4Sb_{12} (R = La and Yb) are not dominated by 4f spins of the R ion, but [Fe₄Sb₁₂] polyanions. More detailed results and analyses will be presented in the workshop.

- ¹⁾ N. R. Dilley *et al.*: Physical review B **58**(1998) 6287.
- ²⁾ A. Leithe-Jasper *et al.*: J. Solid State Chem. 109(1999) 395.
- ³⁾ E. Bauer *et al.*: Eur. Phys. J. **14** (2000) 483.
- ⁴⁾ T. Ikeno *et al.*: 59th Autumn Meeting of PSJ (Aomori, 2004).
- ⁵⁾ I. Tamura *et al.*: J. Phys. Soc. Jpn. **75**(2006) 014707.
- ⁶⁾ K. Magishi *et al.*: J. Phys. Soc. Jpn. **75** (2006) 023701.