(P2-13)

Physical properties of the copper oxides $RCu_3Ru_4O_{12}$ (R=Ca, La, Pr) with similar structures to filled skutterudite

R. Watanuki¹, T. Uchida¹, K. Suzuki¹, H. Harima², A. Yamada³ and T. Sakakibara³

¹Department of Advanced Materials Chemistry, Yokohama National University, Hodogaya-ku, Yokohama 240-8501,

²Department of Physics, Kobe University, Nada-ku, Kobe 657-8501,

³Institute for Solid State Physics, University of Tokyo, Kashiwa, 277-8581

We report the physical properties of the quaternary oxides $RCu_3Ru_4O_{12}$ (R=Ca, La, Pr) and their solid solutions. These oxides crystallize in the cubic structure (space group Im3) closely related to the filled-skutterudite structures where the R atoms are located at the center of the icosahedral cage of oxygen atoms[1]. The similarity of the crystal structure let us expect for $RCu_3Ru_4O_{12}$ appearance of novel magnetic properties, such as Pr-based heavy Fermion superconductivity in $PrOs_4Sb_{12}$, as well as good candidates for thermoelectric materials.

We have prepared polycrystalline sample by heat treating the mixture of CuO, RuO₂, and R_2O_3 or CaCO₃ at 1000 °C for 4 days. For the samples obtained as single-phase, the electrical resistvity, thermoelectric power, thermal conductivity, specific heat and magnetization were measured.

The low temperature physical properties of $RCu_3Ru_4O_{12}$ (R=La and Ca) are basically the same to the results of previous report by Ramirez et al.[2], where the enhanced electronic specific heat coefficient γ reaches 20 mJ/K².mol–Ru for CaCu₃Ru₄O₁₂ and 40 mJ/K².mol–Ru for LaCu₃Ru₄O₁₂, respectively, suggesting the presence of the strong correlation effect of Ru–4*d* conduction electrons. The low temperature magnetic susceptibility data indicates the valence of Cu is nonmagnetic monovalent Cu⁺.

Magnetic susceptibility χ of PrCu₃Ru₄O₁₂ does not follow the Curie-Weiss law over the whole experimental region. The Pr atoms have normal $4f^2$ state (Pr³⁺) from the Curie-Weiss fitting. The χ and the magnetic specific heat divided by temperature C_{mag}/T keep increasing with decreasing temperature down to 2 K, suggesting the degenerate 4f state of Pr under the T_h crystalline electric field symmetry. The C_{mag}/T shows a broad maximum at 0.74 K and decreases gradually with decreasing temperature down to 0.28 K. The absolute value of the C_{mag}/T at 0.28 K is 2.1 J/K²mol-Pr.

The room temperature thermoelectric power and electrical resistivity of $RCu_3Ru_4O_{12}$ are 30–60 μ V/K and 300–800 μ \Omegacm, respectively, and the maximum thermoelectric power factor is estimated at 5 × 10⁻⁴ W/mK². RCu₃Ru₄O₁₂ are promising thermoelectric materials and their properties can be improved by substitution of chemical element and single-crystallization.

[1] M.Labeau, et al. J. Solid State Chem., 33 (1980) 257.

[2] A.P. Ramirez, et al., Solid State Commun. **131** (2004) 251.