ac-Calorimetric Measurements of PrRu₄P₁₂ under High Pressure

A. Miyake¹, A. T. Holmes¹, T. Kagayama¹, K. Shimizu¹, C. Sekine², I. Shirotani²

¹KYOKUGEN, Osaka University, Toyonaka, 560-8531, Japan

We have performed ac-calorimetry measurements on $PrRu_4P_{12}$ under high pressure, and detected a jump in the $C_{ac}(T)$ at $T_{MI} \sim 60$ K up to 6 GPa. It is in agreement with the pressure phase diagram, determined by restivity measurements previously (Fig. 1). Any other anomalies were not observed at lower temperature down to 10 K and up to 6 GPa.

PrRu₄P₁₂ shows a metal-insulator and structural transition at $T_{\rm MI} \sim 62$ K and ambient pressure [1-3]. At ambient pressure and well below $T_{\rm MI}$, two inequivalent crystalline electrical field schemes are revealed [4]. Γ_1 and Γ_4 are located at the Pr1 and Pr2 sites surrounded by smaller and larger cubic Ru sublattices, respectively. Due to the Γ_4 ground state of Pr2, some ordering is required to release that finite entropy in low temperature region. We found metallization and a superconducting transition above 12 GPa [5]. In the metallic region, above 11 GPa, a kink-like anomaly in the $\rho(T)$ curve was observed at ~ 20 K ($T_{\rm A2}$) above $T_{\rm c}$, suggesting a possible phase transition.

In order to clarify the existence of phase transition, we have optimised the sample setting for ac-calorimetry measurements in a diamond-anvil cell for more precise investigation.

Figure 1: Pressure dependence of $T_{\rm MI}$, $T_{\rm A1}$, $T_{\rm A2}$ and $T_{\rm c}$ in ${\rm PrRu_4P_{12}}$

- [1] C. Sekine et al., Phys. Rev. Lett. **79** (1997) 3218.
- [2] C. H. Lee et al., Phys. Rev. B **70** (2004) 153105.
- [3] L. Hao et al., J. Mag. Mag. Mater. **272-276** (2004) e271.
- [4] K. Iwasa et al., Phys. Rev. B **72** (2005) 024414.
- [5] A. Miyake et al., J. Phys. Soc. Jpn **73** (2004) 2370.

²Faculty of Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan