(P1-9)

Optical Conductivity and Electronic Structures of Ce-Filled Skutterudites

<u>K. Senoo</u>¹, M. Matsunami², H. Okamura¹, T. Nanba¹, H. Sugawara³, H. Sato⁴, C. Sekine⁵, I. Shirotani⁵

¹Graduate School of Science and Technology, Kobe University, Kobe 657-8501.

²RIKEN/SPring-8, Sayo 679-5148

³Faculty of Integrated Arts and Sciencies, Tokushima University, Tokushima 770-8502

⁴Graduate School of Science, Tokyo Metropolitan University, Hachioji, 192-0397

⁵Department of Electrical and Electronic Engineering, Muroran Institute of Technology, Muroran 050-8585

We have measured optical conductivity spectra $\sigma(\omega)$ of six members of $\operatorname{Ce}T_4X_{12}$ $(T=\operatorname{Fe}, \operatorname{Ru}, \operatorname{Os} \text{ and } X=\operatorname{P}, \operatorname{Sb})$. In contrast to our previous work [1], a single crystal sample was used for $\operatorname{CeFe_4Sb_{12}}$. The measured $\sigma(\omega)$ spectra of the single crystal $\operatorname{CeFe_4Sb_{12}}$ were, however, very similar to those previously measured on polycrystals. The temperature variation of $\sigma(\omega)$ is small compared with those of $\operatorname{CeOs_4Sb_{12}}$ and $\operatorname{CeRu_4Sb_{12}}$, probably meaning that the *cf* hybridization state in $\operatorname{CeFe_4Sb_{12}}$ at low temperatures is less developed than those in the other two compounds, although the lattice constant of $\operatorname{CeFe_4Sb_{12}}$ is smaller and a stronger hybridization is expected. This might be due to the fact that the Ce filling in the $\operatorname{CeFe_4Sb_{12}}$ single crystal was about 90 % [3]. Previous optical works on $\operatorname{CeFe_4P_{12}}$ by UCSD group [2] were performed on samples showing widely varying electrical resistivities. Accordingly, their $\sigma(\omega)$ spectra of $\operatorname{CeFe_4P_{12}}$ showed a marked Drude component for samples having small resistivities. Our data show insulator-like spectra, and no strong Drude component at and below room temperature, which is consistent with the low carrier density measured on our sample. The $\sigma(\omega)$ spectra of $\operatorname{CeFe_4Sb_{12}}$ and $\operatorname{CeFe_4P_{12}}$ are compared with our previous data on the other compounds, and the variations of their electronic structures are systematically analyzed.

- [1] M. Matsunami et al., J. Magn. Magn. Mater. 272-276, e41 (2004).
- [2] S. V. Dordevic et al., Phys. Rev. B 60, 11321 (1999).
- [3] H. Sugawara et al., unpublished.