(P1-7)

Specific Heat Studies on Filled Skutterudites Sm(Ru,T)₄P₁₂

M. Wakeshima¹, Y. Hinatsu¹, K. Matsuhira², C. Sekine³ and I. Shirotani³

¹Graduate School of Science, Hokkaido University, Sapporo, 060-0810

²Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550

³Department of Electrical and Electronic Engineering, Muroran Institute of Technology,

Muroran, 050-8585

SmRu₄P₁₂ shows a metal-insulator (M-I) transition at 16.5 K [1-3]. The M-I transition for SmRu₄P₁₂ is supposed to have a close relation to an antiferromagnetic ordering [2]. The specific heat at zero field shows a λ -type peak anomaly at the M-I transition temperature [1], which is indicative of a second order transition. However, the specific heat measurements at magnetic fields reveal that this M-I transition occurs in two successive steps [1,3]. These two successive transitions are suggested to coresspond to an orbital and an antiferromagnetic ordering. The mechanism of the M-I transition of SmRu₄P₁₂ is still unclear. In order to elucidate this M-I I transition, the specific heat measurements of Sm(Ru_{0.95}Os_{0.05})₄P₁₂ and Sm(Ru_{0.9}Rh_{0.1})₄P₁₂ have been carried out.

Figure 1 (a) shows a magnetic contribution to the specific heat divided by temperature C_{mag}/T and the magnetic entropy S_{mag} of $\mathrm{Sm}(\mathrm{Ru}_{0.95}\mathrm{Os}_{0.05})_4\mathrm{P}_{12}$. The C_{mag}/T -T curve at zero field exhibits a λ -type peak anomaly at 16 K. The magnetic entropy change reaches to Rln4 at 16 K. Therefore, it is reasonable that $\mathrm{Sm}(\mathrm{Ru}_{0.95}\mathrm{Os}_{0.05})_4\mathrm{P}_{12}$ has a Γ_{67} ground state. The Seebeck coefficient and magnetic susceptibility measurements reveal that an antiferromagnetic and an M-I transition occur at the same temperature. This behavior is very similar to that of $\mathrm{SmRu}_4\mathrm{P}_{12}$. However, the temperature dependence of the specific heats at magnetic fields of $\mathrm{Sm}(\mathrm{Ru}_{0.95}\mathrm{Os}_{0.05})_4\mathrm{P}_{12}$ is different from that of $\mathrm{SmRu}_4\mathrm{P}_{12}$, i.e. the C_{mag}/T -T curve of $\mathrm{Sm}(\mathrm{Ru}_{0.95}\mathrm{Os}_{0.05})_4\mathrm{P}_{12}$ shows one λ -type peak anomaly (see Fig. 1 (b)).

Figure 1: (a) Magnetic contribution to the specific heat divided by temperature C_{mag}/T and the magnetic entropys S_{mag} of Sm(Ru_{0.95}Os_{0.05})₄P₁₂. (b) C_{mag}/T at magnetic fields of Sm(Ru_{0.9}Rh_{0.1})₄P₁₂. The inset shows the *B*-*T* phase diagram.

- [1] K. Matsuhira etal., J. Phys. Soc. Jpn. 71, Suppl. (2002) 237.
- [2] C. Sekine *etal.*, Acta, Physica Polonica B 34 (2003) 983.
- [3] K. Matsuhira etal., J. Phys. Soc. Jpn.74 (2005) 1030.