(P1-5)

NMR study of Ferromagnetic Kondo-lattice Skutterudite Compounds

<u>T. Mito¹</u>, S. Masaki¹, N. Oki¹, S. Wada¹, N. Takeda², H. Sugawara³, D. Kikuchi⁴ and H. Sato⁴

¹Faculty of Science, Kobe University, Kobe 657-8501

²Faculty of Engineering, Niigata University, Niigata 950-2181

³Faculty of Integrated Arts and Sciencies, Tokushima University, Tokushima 770-8502

⁴Graduate School of Science, Tokyo Metropolitan University, Hachioji 192-0397

Some of filled skutterudite compounds exhibit both the Kondo effect and ferromagnetic ordering at low temperatures, and have attracted much interest. For example, $\text{SmOs}_4\text{Sb}_{12}$ is a ferromagnetic heavy-fermion compound with the electronic specific heat coefficient $\gamma = 0.82$ J/mol K² and magnetic ordering temperature $T_{\rm C} \sim 3$ K [1]. Interestingly the γ value does not show any significant field dependence. As related compounds, we have investigated SmFe₄P₁₂ ($T_{\rm C} = 1.6$ K and $\gamma = 0.37$ J/mol K²) and NdRu₄P₁₂ ($T_{\rm C} = 1.6$ K) by using the ³¹P-NMR (nuclear magnetic resonance) technique.

In NdRu₄P₁₂, the resistivity ρ shows a minimum around 12 K, followed by a slight increase, which is attributed to the Kondo effect. Below $T_{\rm C}$, ρ exhibits a rapid decrease [2]. Figure 1 shows the temperature dependence of the spin-lattice relaxation rate $1/T_1$ measured at $H \sim 0.3$ T (the NMR frequency f = 5.1711 MHz) and $H \sim 1.24$ T (f = 21.3701 MHz). At $H \sim 0.3$ T, $1/T_1$ shows weak temperature dependence down to 3 K without showing any fermi liquid like behavior, *i.e.* $1/T_1 \propto T$. This indicates that the T_1 relaxation process above $T_{\rm C}$ is dominated by the spin fluctuations of well localized 4f electrons, The rapid decrease in $1/T_1$ below 2 K is due to the ferromagnetic ordering. The onset temperature of the rapid decrease increases with increasing field (~ 7 K at $H \sim 1.24$ T). This is well consistent with field effect on ρ at low temperatures [2]. Besides, the values of $1/T_1$ above $T_{\rm C}$ are largely suppressed at $H \sim 1.24$ T. These phenomena indicate that low energy magnetic fluctuations are easily suppressed by small magnetic field. We will discuss the spin dynamics in NdRu₄P₁₂ by comparing with the results on SmFe₄P₁₂.

[1] S. Sanada et al., J. Phys. Soc. Jpn. **74** (2005) 246.

[2] H. Sugawara *et al.*, JPS Spring Meeting (2006).

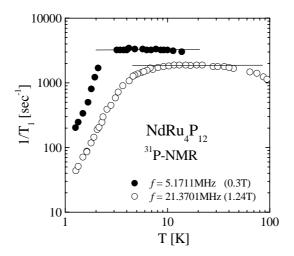


Figure 1: Temperature dependence of $1/T_1$ in NdRu₄P₁₂.