(P1-28)

5f electronic state of the transuranium compound NpIn₃

<u>D. Aoki</u>¹, Y. Homma¹, H. Sakai², S. Ikeda², Y. Shiokawa^{1,2}, E. Yamamoto², A. Nakamura², Y. Haga², R. Settai³ and Y. Ōnuki^{3,2}

¹Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313

 $^2\mathrm{Advanced}$ Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195

³Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043

We succeeded in growing a high-quality single crystal of NpIn₃ by the In-flux method, and measured the electrical resistivity, specific heat, magnetic susceptibility, magnetization and de Haas-van Alphen (dHvA) effect. Ferromagnetic and antiferromagnetic orderings occur at $T_{\rm C} = 14$ K and $T_{\rm N} = 10$ K, respectively, together with another transition at $T^* = 8$ K. When the magnetic field is applied to the sample, the antiferromagnetic state is finally changed into a ferromagnetic state with two metamagnetic transitions. The antiferromagnetic ordering and two metamagnetic transitions are found to be of the first-order phase transition. In the dHvA experiments, we observed three dHvA branches with the cyclotron mass ranging from 3.4 to $14 m_0$. These dHvA branches are discussed from a viewpoint of the 5*f*-localized model based on the Fermi surface of LaIn₃.

Figure 1: Magnetic phase diagram of NpIn₃.

Figure 2: Angular dependence of the dHvA frequency in the ferromagnetic state of NpIn₃.