(P1-23)

Anomalous quasiparticle transport in the superconducting state of $CeCoIn_5$

<u>Y. Kasahara</u>¹, Y. Nakajima², K. Izawa^{2,3}, Y. Matsuda^{1,2}, K. Behnia^{2,4}, H. Shishido^{1,5}, R. Settai⁵ and Y. Onuki⁵

¹Department of Physics, Kyoto University, Sakyo-ku, Kyoto 277-8581, Japan

²Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan ³CEA-Grenoble, 38054 Grenoble cedex 9, France

⁴Laboratoire de Physique Quantique (CNRS), ESPCI, 10 Rue de Vauquelin, 75231 Paris, France

⁵Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

To investigate the quasiparticle dynamics in the superconducting state of quasi-two dimensional heavy fermion superconductor CeCoIn₅, the thermal conductivity tensor is measured[1]. In zero magnetic field, thermal Hall angle shows up a steep increase below T_c , indicating that the quasiparticle mean free path is strongly enhanced. However, in spite of the presence of a periodic vortex lattice, this enhancement is easily suppressed by a very weak magnetic field.

We found that the density states of the delocalized quasiparticles N_{del} , which is obtained from κ_{xx} and κ_{xy} , exhibits a \sqrt{H} -dependence, indicating a Volovik effect[2]. Moreover, κ_{xy} reveals the scaling relation with respect to T/\sqrt{H} , which is expected for *d*-wave symmetry[3]. These results provide a further support for *d*-wave superconducting symmetry in CeCoIn₅. We also argue that a small Fermi energy, a short coherence length, and a long quasiparticle mean free path all indicate CeCoIn₅ is in the superclean regime.

These results highlight that $CeCoIn_5$ is unique among superconductors.

Figure 1: Quasiparticle mean free path ℓ as a function of temperature in zero magnetic field. Inset shows magnetic field dependence of ℓ . Dashed line indicates the inter-vortex distance $a_v = \sqrt{\Phi_0/B}$.

- [1] Y. Kasahara *et al.*, Phys. Rev. B **72**, 214515 (2005).
- [2] G. E. Volovik, JETP Lett. 58, 469 (1993).
- [3] S. H. Simon and P. A. Lee, Phys. Rev. Lett. 78, 1548 (1997).