(P1-11) Magnetic and Thermoelectric Properties of LaT₄Sb₁₂ (T = Fe, Ru, Os)

<u>S. Narazu¹</u>, K. Hayashi¹, E. Matsuoka³, T. Takabatake^{1,2}

¹Dept. Quantum Matter, ADSM, ²Institute for Advanced Materials Research,

Hiroshima University, Higashi-Hiroshima 739-8530

³Department of Physics, Tohoku University, Sendai 980-8578

Our previous studies of alkaline-earth-filled skutterudites AT_4Sb_{12} (T = Fe, Ru, Os) revealed that the magnetic properties strongly depend on the T element [1,2]. A nearly ferromagnetic metal for T = Fe changes to an enhanced Pauli paramagnet for T = Os, and a diamagnetic metal for T = Ru. Among these compounds, the thermal conductivity for T = Os is largely suppressed and does not show a peak at low temperatures [2]. In order to understand the origin of these trends in alkaline-earth filled systems, we have studied the magnetic and thermoelectric properties of LaT₄Sb₁₂ (T = Fe, Ru, Os), which are free from the complexity due to 4*f* electrons.

prepared Dense polycrystalline samples were bv spark-plasma-sintering [1]. The filling fractions of La are 0.88, 0.95, and 0.98, respectively, for T =Fe, Ru, Os. We measured the magnetic susceptibility χ , electrical resistivity ρ , thermal conductivity κ , thermopower S, and specific heat C. The temperature dependences are shown in the figures. As similar to the case of A = divalent Ca, Sr, and Ba ions, the magnetism of the systems with trivalent La ions changes from the Curie-Weiss paramagnetic metal for T = Fe to a Pauli paramagnetic metal for T = Os, and a diamagnetic metal for T = Ru. Along with this change, the electronic specific heat coefficient decreases from 145 to 53, and 48 mJ/K²mol. For T = Fe and Os, $\rho(T)$ has a shoulder at 50 K and 100 K, respectively. S(T) for T = Fe exhibits a negative minimum at 50K and increases up to 70 μ V/K with increasing temperature, whereas S (T) for T = Ru and Os is smaller than that for T = Fe and monotonically increases. It is remarkable that $\kappa(T)$ of LaT₄Sb₁₂ does not show any peak

at low temperatures for all T = Fe, Ru, and Os. Recalling that the ionic radius of La^{3+} is smaller than that of A^{2+} , the absence of the peak in $\kappa(T)$ is attributed to the phonon scattering by lattling of La^{3+} ions in the oversized cage of T₄Sb₁₂ [3]. For T = Fe, the scattering by the La defects should also play a role.

- [1] E. Matsuoka et al., J. Phys. Soc. Jpn. 74 (2005) 1382.
- [2] E. Matsuoka et al., J. Phys. Soc. Jpn. 75 (2006) 014602.
- [3] T. Takabatake et al., Physica B (2006) in press.