(P1-10)

NMR/NQR studies of $LaFe_4Sb_{12}$ and $CeFe_4Sb_{12}$

K. Magishi¹, Y. Nakai², K. Ishida², H. Sugawara¹, I. Mori¹, T. Saito¹, and K. Koyama¹

¹Faculty of Integrated Arts and Sciences, The Univ. of Tokushima, Tokushima 770-8502 ²Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502

The family of filled skutterudites with the general formula RM_4X_{12} (R = rare earth, M = Fe, Ru, or Os, X = P, As, or Sb) has attracted a great deal of interest, because these compounds show a wide variety of transport and magnetic properties at low temperatures. Among them, RFe_4Sb_{12} compounds show various ground states, e.g., LaFe_4Sb_{12} is a non-superconducting metal[1], CeFe_4Sb_{12} is a semimetallic heavy-fermion compound[2], and NdFe_4Sb_{12}, SmFe_4Sb_{12} and EuFe_4Sb_{12} show a ferromagnetic transition[3]. In this report, we focus on the magnetic properties of filled skutterudite antimonides LaFe_4Sb_{12} and CeFe_4Sb_{12} at low temperatures via the microscopic probes of ^{121,123}Sb-nuclear quadrupole resonance (NQR) and ¹³⁹La-NMR.

In LaFe₄Sb₁₂, the nuclear spin-lattice relaxation time T_1 of Sb nuclei deviates from the relation $T_1T = \text{constant}$ above 4.2 K, where $1/T_1T$ has a Curie-Weiss temperature dependence $1/T_1T = C/(T + \theta)$ with $\theta \sim 30$ K. The temperature dependence of the Knight shift of ¹³⁹La nuclei, which is related to the susceptibility at q = 0, is scaled to that of $1/T_1T$ above 40 K. This relation strongly suggests that ferromagnetic fluctuations are predominant in LaFe₄Sb₁₂. We also point out that LaFe₄Sb₁₂ is situated close to the ferromagnetic instability due to the small Weiss temperature in the Curie-Weiss behavior of $1/T_1T$ and the Knight shift.

In CeFe₄Sb₁₂, $1/T_1$ shows an activated temperature dependence $1/T_1 \propto \exp(-\Delta/k_{\rm B}T)$ above 50 K with an energy gap $\Delta/k_{\rm B} = 200$ K. On the other hand, $1/T_1$ is proportional to the temperature below 30 K. This behavior is explained by a pseudogap model, which is suggested to be induced by the effect of the hybridization between Ce 4f and conduction electrons.

- [1] E. Bauer *et al.*: Phys. Rev. B **63** (2001) 224414.
- [2] D. T. Morelli and G. P. Meisner: J. Appl. Phys. 77 (1995) 3777.
- [3] M. E. Danerbrock *et al.*: J. Phys. Chem. Solids. **57** (1996) 381.

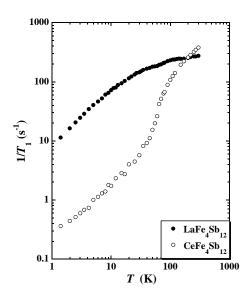


Figure 1: Temperature dependencies of the nuclear spin-lattice relaxation rates $1/T_1$ for LaFe₄Sb₁₂(\bullet) and CeFe₄Sb₁₂(\circ).