(O3-1)

Field-angle dependence of the low temperature specific heat of $PrOs_4Sb_{12}$

T. Sakakibara¹, A. Yamada¹, J. Custers¹, T. Tayama¹, H. Sugawara², Y. Aoki³ and H. Sato³

¹Institute for Solid State Physics, University of Tokyo, Kashiwa, 277-8581

²Faculty of Integrated Arts and Sciencies, Tokushima University, Tokushima 770-8502

³Graduate School of Science, Tokyo Metropolitan University, Hachioji, 192-0397

We have been studying the field-angel dependence of the specific heat $C(H,\theta)$ of $\operatorname{PrOs}_4\operatorname{Sb}_{12}$ to probe the superconducting gap symmetry. Previously, we reported that $C(H,\theta)$ exhibits a clear fourfold oscillation with minima along [100] in the whole field range below H_{c2} , when H is rotated in the (001) plane at low T. Interestingly, the fourfold oscillation was found to persist even slightly above H_{c2} , whose origin was not clear. Here we have extended the measurements to the normal state of $\operatorname{PrOs}_4\operatorname{Sb}_{12}$, in order to shed light on the electronic state of this system.

Fig. 1 shows some examples of the data taken in a field of 2.5 T (> $H_{c2} = 2.1$ T) rotated in the (001) plane. We clearly observed a fourfold oscillation in the normal state. Surprisingly, we found that the oscillation reverses the sign at ~0.4 K. Fig. 2 shows the summary of the measurements we have done so far. The sign-reversal point moves in the H - T plane as indicated. At present, we do not have any simple explanation for this normal-state $C(H,\theta)$ oscillations; neither CEF excitations nor Pr nuclear contribution gives the $C(H,\theta)$ oscillation of this magnitude. One possible origin might be the quadrupole fluctuations, which may contribute to $C(H,\theta)$ through the anisotropy in the transition field/temperature of the high-field AFQ phases. A strong oscillation is indeed observed within the AFQ phase (5.5 T) as expected from mean-field calculations.

Figure 1: Field-angle dependence of the normalstate specific heat in a field H=2.5 T rotated in the (001) plane, obtained for three different temperatures.

Figure 2: Fourfold oscillation amplitude in the H - T plane. Solid (open) circles indicate the angular oscillations with minima (maxima) along [100]. Size of the symbols indicates the relative amplitude of the oscillation (not in scale). Crosses show the region where the oscillation vanishes.