(O2-2)

NMR study of single crystal $SmRu_4P_{12}$

<u>S. Masaki</u>¹, T. Mito¹, N. Oki¹, S. Wada¹, N. Takeda², H. Sugawara³, D. Kikuchi⁴, H. Sato⁴ and G.-q. Zheng⁵

¹Faculty of Science, Kobe University, Kobe 657-8501

²Faculty of Engineering, Niigata University, Niigata 950-2181

³Faculty of Integrated Arts and Sciencies, Tokushima University, Tokushima 770-8502

⁴Graduate School of Science, Tokyo Metropolitan University, Hachioji 192-0397

⁵Graduate School of Science, Okayama University, Okayama 700-8530

SmRu₄P₁₂ exhibits two successive transitions at $T^* \sim 15$ K and $T_{\rm MI} \sim 16.5$ K [1]. Recently, some experimental reports suggested that the latter transition originates from octapole ordering at $T_{\rm MI}$ [2,3]. In order to microscopically study the ordering state below $T_{\rm MI}$, we have carried out ³¹P-NMR measurements using a powder sample. The results are summarized as follows;

- (i) The resonance shift for $T^* < T < T_{\rm MI}$ consists of field-independent and field-dependent terms. The field-independent component indicates that the some type of magnetic ordering takes place just below $T_{\rm MI}$ at least for H > 0.8 T. On the other hand, the field-induced component suggests the occurrence of multipole ordering, because similar behavior has been observed in some of the compounds which show the multipole ordering [4].
- (ii) The result of T_1 measurements indicates that there are different types of magnetic fluctuations in SmRu₄P₁₂: one freezes below $T_{\rm MI}$ and the other does below T^* . This implies that the ordered state is not a simple dipole ordering.

These experimental results leads to consider the two possible types of multipole ordering [5]: pure octapole ordering or octapole + dipole ordering state. For the latter state, both components are expressed by an irreducible representation Γ_4^- in T_h symmetry.

In order to obtain further information of the symmetry of ordering, one need to measure the angle dependence of the NMR spectrum against field using a single crystal sample. We have recently introduced a new NMR probe with two-axes rotating system. Figure 1 shows a typical ³¹P-NMR spectrum for $H \parallel (100)$. We will present detailed results in the session.

- [1] K. Matsuhira et al., J. Phys. Soc. Jpn. 71 (2002) Suppl. 237.
- [2] M. Yoshizawa et al., J. Phys. Soc. Jpn. 74 (2005) 2141.
- [3] K. Hachitani et al., Phys. Rev. B 73 (2006) 052408.
- [4] See, for example, K. Ishida et al., Phys. Rev. B 71 (2005) 024424.
- [5] S. Masaki *et al.*, J. Phys. Soc. Jpn. **75** (2006) 15261.

Figure 1: ³¹P-NMR spectrum of single crystal SmRu₄P₁₂ for $H \parallel (100)$ and at T = 20 K.