Studies of vortex lattice in PrOs₄Sb₁₂ by scanning tunneling spectroscopy

S. Kaneko¹, M. Furuyama¹, H. Sugawara², Y. Aoki³, H. Sato³ and N. Nishida¹

A filled skutterudite compound PrOs₄Sb₁₂ is the first Pr-based heavy-fermion superconductor. The physical properties have been intensively studied and the unconventional superconductivity has been reported by many experiments. We have performed scanning tunneling microscopy (STM) and spectroscopy (STS) measurements on PrOs₄Sb₁₂. STM/STS is able to measure surface structures on an atomic length scale and the local density of states of quasiparticles on the surface. In the STM/STS study it is important to prepare a clean surface. We prepared a sample surface by cracking a single crystal at liquid helium temperature. On this surface we have observed topographic images which represent a crystal structure of PrOs₄Sb₁₂. We have applied magnetic fields parallel to the [001] direction and have succeeded in observing vortex lattices at 0.40K. We will discuss the shape of vortex lattice and the orientation relative to the crystal axis.

¹Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551

²Faculty of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502

³Graduate School of Science, Tokyo Metropolitan University, Hachioji, 192-0397