(O1-14)

Hidden Order in URu₂Si₂ Studied by Single-Crystal NMR

S. Takagi¹, S. Ishihara¹, S. Saitoh¹, H. Tanida¹, M. Yokoyama², and H. Amitsuka³

¹Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

²Faculty of Science, Ibaraki University, Mito 310-8512, Japan

³Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

The still unclarified hidden order (HO) phase below $T_0=17.5$ K in URu₂Si₂ has been investigated by ²⁹Si (I=1/2) NMR on two single crystals under ambient *P*.

In order to describe the tiny-moment antiferromagnetism (AF) under ambient P, the model of the "Smal-Moment AF" (SMAF) has been proposed previously, which interprets the ambient-P tiny-moment AF in terms of spatially homogeneous AF with $\mu_{\text{SMAF}}=0.02\text{-}0.04 \ \mu_{\text{B}}/[001]$ and $Q_0=[001]$ over the entire sample. The ²⁹Si NMR FFT spectra for $H_{\text{ext}}//c$ -axis at T=4.5 K covering a wide frequency range has revealed no splitting of the line expected for the SMAF on the basis of a scaling from the P-stabilized Q_0 AF. Our results can definitely exclude the SMAF model to explain the ambient-P tiny-moment AF, but support the inhomogeneous model, in which the ambient P tiny-moment AF occurs spatially inhomogeneously only in a very tiny part (of the order of 0.6 %) and the HO occurs in the remaining majority of the sample.

In the HO phase, the ²⁹Si NMR linewidth $\Delta H_{1/2,p}$ for $H_{\text{ext}}//p$ -axis (p=a, c) can include the additional contribution $\delta H_{\text{add},p}$, due to the internal field from the HO, over the inhomogeneous width αM_p that is proportional to the bulk magnetization M_p ($\Delta H_{1/2,p}=\Delta H_{\text{add},p}+\alpha M_p$). For $H_{\text{ext}}//c$ -axis, $\Delta H_{\text{add},c}$ appears below T_0 , has a peak around 16.5 K, decreases gradually and then disappears almost completely around 14 K. The nuclear spin transverse relaxation rate $1/T_{2c}$ also shows a peculiar T-dependence with a peak around 16.5 K. Such an anomaly, however, is not observed in the closely related nuclear spin longitudinal relaxation rate $1/T_{1a}$, which points to the existence of the very slow internal-field fluctuations just below T_0 . In the presentation, we discuss that these anomalous behaviors of $\Delta H_{1/2,c}$ and $1/T_{2c}$ can be explained consistently in terms of the short-range AF order induced in the time-reversal-symmetry-breaking multipole order under remaining residual strains most probably caused in connection with stacking-faults in the crystal.

The finite $\Delta H_{\text{add},a}$ for ²⁹Si (I=1/2) even as $H_{\text{ext}} \rightarrow 0$ for $H_{\text{ext}}//a$ -axis around 14 K, where the above short-range AF disappears, also indicates that the time-reversal-symmetry is broken at T_0 . We will show that the octupole T_z^β or T_{xyz} order in the singlet ground-state level-scheme is the most likely scenario for the HO in URu₂Si₂.