(O1-13)

Non-fermi liquid-like behavior in a heavy lanthanide compound YbFe₄P₁₂

<u>A. Yamamoto¹</u>, S. Wada¹, I. Shirotani² and C. Sekine²

¹Department of Material Science, Graduate School of Science and Technology, Kobe University, Nada, Kobe 657-8501

²Faculty of Engineering, Muroran Institute of Technology, Mizumoto, Muroran 050-8585

Recently, a new filled skutterudite with heavy lanthanide element, YbFe₄P₁₂, has been successfully synthesized. The lattice constant,¹⁾ susceptibility,¹⁾ and specific heat²⁾ measurements indicate that YbFe₄P₁₂ is in an intermediate-valence state between Yb²⁺ and Yb³⁺. However, the electric resistivity exhibits the minimum near 45 K, followed by an increase at low temperatures.¹⁾ The specific heat C has two distinct anomalies: a λ -type peak at $\simeq 0.7$ K and a Schottky-type peak near 30 K.²⁾ The latter is attributed to the crystal-field splitting effect, whereas the origin of the former is not yet clarified. In addition, the electronic specific heat coefficient $\gamma = C/T$ below ~ 10 K exhibits a divergent increase,²⁾ yielding a rough estimate of $\gamma(T=0) \sim 0.3$ J/mol·K². To elucidate the electronic and magnetic states of YbFe₄P₁₂ at a microscopic level, we have carried out ³¹P nuclear magnetic resonance (NMR) measurements.

Figure 1 shows the dependence of the nuclear spin-lattice relaxation rate $1/T_1T$ on the temperature. Below ~50 K, $1/T_1T$ strongly depends on both temperature T and applied magnetic field H, and follows the power-law relation $1/T_1T = AT^{-\alpha}$ over one decade. As shown in Fig. 2, the power $\alpha \sim 0.1$ at 7.0 T increases with decreasing H and takes the maximum value of $\simeq 0.7$ at 0.2 T, which is close to the value 3/4 expected for the non-Fermi liquid (NFL) state associated with antiferromagnetic spin fluctuations. We suggest that YbFe₄P₁₂ is an interesting material in which the NFL-like behavior occurs below a rather high temperature of ~10 K, and a magnetic field of about 0.2 T is sufficient to bring it to its quantum critical point.

Figure 1: Temperature dependence of the ³¹P spin-lattice relaxation rate $1/T_1T$ in YbFe₄P₁₂. The virtual dotted lines are drawn in the figure as a guide to the eye. The $1/T_1T$ data are replotted in the inset on a semi-log scale.

Figure 2: Field dependence of power α in the relation $1/T_1T = AT^{-\alpha}$ for ³¹P in YbFe₄P₁₂. The data are replotted in the inset on a semilog scale.

¹⁾ I. Shirotani *et al.* : J. Phys.: Condens Matter 17(2005) 4383.

²⁾ M. Wakeshima *et al.* :Proceedings of Joint Workshop on NQP-skutterudites and NPM in multi-approach (Hachioji, Tokyo, 2005) PB28.