(O1-12)

Anomalous physical properties of new fiilled-type compound $Tm_2Rh_{12}P_7$

<u>K. Tatematsu¹</u>, <u>N. Takeda</u>², Y. Kobayashi², T. Nishioka³, K. Kodama⁴, K. Shimizu⁵, T. Matsushita,⁵, N. Wada⁵, S. Naratsu⁶, T. Takabatake⁶, K. Fukuda¹, Y.Yamada⁷

¹Graduate School of Science and Technology, Niigata University, Niigata 950-2181

²Faculty of Engineering, Niigata University, Niigata 950-2181

³Faculty of Science, Kochi University, Kochi 780-8520

⁴Center for Advenced Marine Core Research, Kochi University, Kochi 783-8502

⁵Graduate School of Science, Nagoya University, Nagoya 464-8602

⁶Graduate Schoold of Matter, Hiroshima University, Higashi-Hiroshima 739-8530

⁷Faculty of Science, Niigata University, Niigata 950-2181

One of the structural characteristics of filled skutterudite is the presence of unfilled skutterudites. It is well known that the rare-earth ions occupy the voids of unfilled skutterudite. We are exploring new filled-type materials other than filled skutteridite. Pivan et al. reported the crystal structure of $R_2Rh_{12}P_7$ (R=Rare Earth) and $Rh_{12}P_7$. Both compounds have the same space groupe of P63/m. According to the report, the crystal structure of $Rh_{12}P_7$ has voids and R-ions occupy their voids in $R_2Rh_{12}P_7$.

 $\text{Tm}_2\text{Rh}_{12}\text{P}_7$ is one of the most interesting material in $\text{R}_2\text{Rh}_{12}\text{P}_7$. Powdered samples were prepared by solid-state reaction. The magnetic susceptibility, $\chi(T)$, follows a Curie-Weiss law down to 2K with a paramagnetic Bohr-magneton of 7.4 μ_B and a Weiss temperature of -4K. The paramagnetic Bohr-magneton is very close to the theoretical value of trivalent state with S = 1, L = 5 and J = 6. No magnetic transition is observed in $\chi(T)$ down to 2 K. The electrical resistivity of high-density pellets prepared by a spark-plasma sintering technique is metallic. We show in Fig.1 the temperature dependence of C/T below 1K. The value of C/T attains as large as 1 J/mol-Tm·K². The J = 6-multiplet splits into five nonmagnetic singlets and four doublets. If the ground state is singlet, the ground state would be Van-Vleck paramagnet. In this case, the large C/T is not expected. If the ground state is a doublet, the ground state would be magnetic and the magnetic entropy attains $R\ln 2$. The experimental result for entropy is much less than $R\ln 2$. The reduced entropy is a characteristic feature of heavy-fermion systems. It is likely that the heavy-fermion state is realized in $\text{Tm}_2\text{Rh}_{12}\text{P}_7$.

Fig. 1: The temperature dependence of C/T.