NMR measurements of LaPt₄Ge₁₂ and CePt₄Ge₁₂ K. Magishi¹, M. Toda¹, H. Sugawara¹, T. Saito¹, K. Koyama¹, Y. Aoki² and H. Sato² ¹Faculty of Integrated Arts and Sciencies, The Univ. of Tokushima, Tokushima 770-8502 ²Graduate School of Science, Tokyo Metropolitan University, Hachioji, 192-0397 Recently, Gumeniuk et al. have succeeded to synthesize Ge-based filled skutterudites RPt_4Ge_{12} (R = La, Ce, Pr, Nd, Eu)[1], and found the superconductivity in $LaPt_4Ge_{12}$ and $PrPt_4Ge_{12}$. They have also reported that $CePt_4Ge_{12}$ shows fluctuating valence. In this presentation, we report on the results of the nuclear magnetic resonance (NMR) measurements for $LaPt_4Ge_{12}$ and $CePt_4Ge_{12}$ to deepen the understanding of electronic states at low temperatures. Figure 1 shows the temperature dependencies of $1/T_1$ for ¹⁹⁵Pt and ¹³⁹La in LaPt₄Ge₁₂. $1/T_1$'s are practically linear in temperature above $T_{\rm C}$ in a temperature range below 30 K. Above 30 K, $1/T_1$'s deviate from the linear temperature dependence, and obey the following relation $1/T_1T = C/\sqrt{T+\theta}$, suggesting to be dominated by the AFM fluctuations. Below $T_{\rm C}$, on the other hand, $1/T_1$ exhibits no coherence peak under the external magnetic field. Inset displays the Arrhenius plot of $T_1/T_{\rm 1N}$ vs $T_{\rm C}/T$, where $T_{\rm 1N}$ is the value of T_1 at $T_{\rm C}$. One observes that $\ln(T_1/T_{\rm 1N})$ is proportional to $T_{\rm C}/T$, that is, an exponential decrease upon cooling $(T_1/T_{\rm 1N}) \propto \exp[\Delta(0)/k_{\rm B}T]$ below $T_{\rm C}$. From the slope of the Arrhenius plot, we obtain $\Delta(0)/k_{\rm B}T_{\rm C} = 1.62$, close to the value of the conventional BCS theory in the weak coupling limit $\Delta(0)/k_{\rm B}T_{\rm C} = 1.76$. This result is interpreted as an evidence for a conventional s-wave pairing. More detailed results and analyses including for CePt₄Ge₁₂ will be presented at the meeting. [1] R. Gumeniuk et al.: Phys. Rev. Lett. 100 (2008) 017002. Figure 1: T-dependencies of $1/T_1$ of $^{195}\mathrm{Pt}$ and $^{139}\mathrm{La}$ in $\mathrm{LaPt_4Ge_{12}}$. Arrows indicate T_C 's under respective external magnetic fields. Inset displays the Arrhenius plot of $T_1/T_{1\mathrm{N}}$ vs T_C/T .