High-field magnetic properties of caged rare-earth borides RB_n (n = 4, 12)

<u>F. Iga</u>¹, Michimura S.¹, Murakami K.¹, Takabatake T.¹, Suga K.², Kindo K.², Yoshii S.³

The Rare earth borides exhibit a variety of physical properties ranging from superconductor (YB₆, ZrB₁₂), to typical Kondo lattice system with a quadrupole ordering (CeB₆), valence fluctuating system with a correlated small energy gap (SmB₆ (valence=2.6), YbB₁₂ (valence=2.9-3.0)), multi-step magenetization system RB₄ (R=Tb-Tm). Single crystals of these rare earth borides have been prepared by a floating zone method using an image furnace with four xenon lamps.

YbB₁₂ is called "Kondo semiconductor" in which an energy gap of 200 K gradually opens as temperature is decreased below 100 K [1]. Application of magnetic field of approximately 50 Tesla destroys the gap and induces a first-order transition from a semiconducting state to a metallic state [2]. The magnetization of the single crystalline sample increases suddenly in an anisotropic way at the critical fields $B_{C1} = 47$ Tesla for B//[100] and $B_{C2} = 54$ Tesla for B//[110] and [111]. In the present study, we have measured both magnetization and magnetoresistance up to 68 Tesla by using a long-pulse magnet (pulse width 36 ms). Thereby, heating effect was much reduced. Magnetization M(B) at 1.3 K reproduced the previous data described above with hysteretic behaviors at B_{C1} and B_{C2} . Above 60 Tesla, M(B) increases linearly up to the highest field of 68 Tesla as shown in Fig. 1.

Rare-earth tetraboride RB_4 has a tetragonal crystal structure where the sublattice of R ions in the c-plane is equivalent to the Shastry-Sutherland lattice, that is known as a model of a quantum spin system $SrCu_2(BO_3)_2$ [3]. A novel magnetic ordering state is expected by the geometric frustration between the orthogonal R-R dimmers as seen in DyB_4 and HoB_4 [4].

We have determined magnetic phase diagrams of isostructural system TbB_4 , ErB_4 and TmB_4 from the measurements of magnetization, magnetoresistance, magnetostriction, specific heat, neutron diffraction and Hall effect. Magnetization process for B//c and a in ErB_4 [5] and TmB_4 [6] shows a plateau at half moment and the full saturated moment, respectively. Otherwise, TbB_4 shows nine plateaus for B//c [7], but a simple metamagnetic transition for B//a. These field dependences and obtained magnetic phase diagrams would be explained as a result of competition between the frustration effect and Zeeman effects.

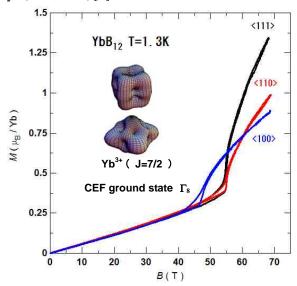


Fig. 1 Magnetization process at 1.3 K of YbB_{12} for B/[100], [110] and [111] up to 68 T.

References

- 1) F. Iga et al., J. Mag. Mag. Mater. 177-181 (1998) 53.
- 2) S. Kawasaki et al., Physica B 281&282 (2000) 234.
- 3) H. Kageyama, et al., Phys. Rev. Lett. 82 (1999) 3168.
- 4) R. Watanuki et al., J. Phys. Soc. Jpn. 74 (2005) 2169.
- 5) S. Michimura *et al.*, Physica B **378-380** (2006), 596.
- 6) F. Iga et al., J. Magn. Magn. Mater. 310 (2007) e443.
- 7) S. Yoshii et al., J. Magn. Magn. Mater. 310 (2007) 1282.

¹ ADSM, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530

² Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581

³ Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577