Raman scattering of filled skutterudite - CEF excitation and filling rate -

N. Ogita¹, T Hasegawa¹, M. Udagawa¹, Y. Ishikawa², H. Sugawara³, T. Ikeno⁴ and H. Sato⁴

In this meeting, we pay attention to the crystal electric field (CEF) excitation for $PrRu_4P_{12}$ and the filling effect of Nd ion for $Nd_xFe_4Sb_{12}$ observed in Raman spectra

1. CEF excitation for PrRu₄P₁₂

In the Raman spectra of $PrRu_4P_{12}$, CEF excitations are observed at every temperature we measured. We have assigned the CEF peaks observed below 250 cm⁻¹ by applying magnetic field, and determined the energy level scheme. In the polarization dependence of the CEF spectra, we have observed a spectral asymmetry originated from the Th symmetry, that is, the difference of T_g spectra between (x,y) and (y,x) polarization conditions, where (α,β) denotes polarization directions of incident (α) and scattered (β) light. Figure 1 shows excitation energy dependence of T_g Raman spectra (x,y) and (y,x). Broad peaks assigned as the CEF excitations below 200 cm⁻¹ show a significant spectral difference between (x,y) and (y,x). In the perturbation theory for Raman scattering, the phenomenon is expected to be observed at a resonance scattering. In fact, the resonance scattering is observed at around $\lambda \simeq 530 \text{nm}(\simeq 2.3 \text{eV})$, as shown in the Fig. 1.

2.filling effect of Nd ion $Nd_xFe_4Sb_{12}$

Figure 2 shows the polarization dependence of $\mathrm{Nd}_x\mathrm{Fe_4Sb_{12}}$ Raman spectra for x=0.744 and 0.901. As shown in the Fig. 2, with decreasing the filling rate x, the phonon energies decrease about 2 cm⁻¹, and a decrease in $4\sim5\mathrm{cm}^{-1}$ is especially observed for A_{g1} and E_{g1} . The energy decrease for most phonons suggests the increase of the lattice parameter. The large decrease of A_{g1} and E_{g1} suggests that these modes are sensitive for the rare earth behavior, because A_{g1} and E_{g1} phonons correspond to the stretching motion of pnicogens with the rare earth ion.

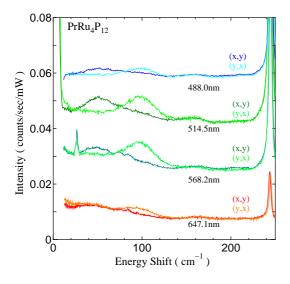


Figure 1: Excitation energy dependence of T_g spectra (x,y) and (y,x) for $PrRu_4P_{12}$ measured at T=300K.

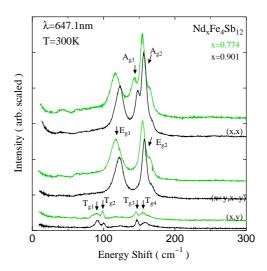


Figure 2: Polarization dependence of $Nd_xFe_4Sb_{12}$ for x=0.774 and 0.901 measured at T=300K.

¹Graduate School of Integrated Arts & Sci., Hiroshima University, Hiroshima 739-8521

²Department of Physics, University of Toyama, Toyama 930-8555

³Faculty of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502

⁴Graduate School of Science, Tokyo Metropolitan University, Hachioji, 192-0397