Specific Heat and Thermoelectric Power Studies of Filled Skutterudites Synthesized Under High-pressure

<u>K. Matsuhira</u>¹, C. Sekine², I. Shirotani², T. Namiki^{2,3}, M. Wakeshima⁴, Y. Hinatsu⁴, H. Amitsuka⁵, H. Sugawara⁶, D. Kikuchi³, H. Sato³

¹Kyushu Institute of Technology, Kitakyushu 804-8550

We have systematically studied filled skutterudites RT_4X_{12} by specific heat and thermoelectric power measurements. In this meeting, we report and discuss the research results below.

(1) Novel properties in Sm-based filled skutterudites

The CEF states and Kondo temperature in $\operatorname{Sm} T_4 P_{12}$ (T=Fe, Ru, Os) is estimated from the specific heat analysis [1]. Furthermore, we revealed that the $true\ C/T$ of heavy fermion compound $\operatorname{SmOs_4Sb_{12}}$ steeply increases below $T^* \sim 20\ \text{K}$ without indicating a CEF effect [2].

(2) Novel phase transitions due to Fermi surface nesting in RRu₄P₁₂

 RRu_4P_{12} (R=Gd, Tb, Dy) shows a clear upturn in thermoelectric power at their phase transition temperatures, indicating a dramatic decreasing of carrier number due to Fermi surface nesting [3]. Furthermore, we revealed the novel phase diagram in TbRu₄P₁₂ ($T_N=20K$) with multi phases [4]. Interestingly, the T_N is not sensitive to a magnetic field in comparison with the case of $GdRu_4P_{12}$ ($T_N=22K$). As the ordered state is strong against magnetic field, the ordered states in TbRu₄P₁₂ are speculated to be related to a multipole order [5].

(3) Low energy guest-mode of filled skutterudites

For La-based filled skutterudites, we can make a rough estimate of the phonon spectrum in low-energy region from the lattice specific heat. All La-based compounds have a large broad

maximum in $(C - \gamma T)/T^3$ characterized by Einstein specific heat, suggesting a nearly dispersionless low-energy optical mode. In filled skutterudites, the low-energy optical modes are associated with the modes including R ions in the X_{12} -cage. The energy of low-lying guest mode is estimated from the broad peak in $(C-\gamma T)/T^3$ $(T_{\rm max} \sim \Theta_{\rm E}/4.9)$. Figure 1 shows the guest free distance r_{GF} dependence of Einstein temperature $\Theta_{\rm E}$: $r_{\rm GF} \equiv r_{R-X} - r_{\rm La^{3+}} - r_X$, where r_{R-X} is the distance between R and X, $r_{\rm La^{3+}}$ is the effective ionic radius of La³⁺ with coordination number 12 and r_X is the covalent radius of X. We discuss the correlation between the energy of low-lying guest mode and the structural parameter.

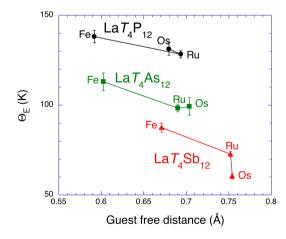


Figure 1: Guest free distance dependence of Einstein temperature $\Theta_{\rm E}$ for ${\rm La}\,T_4X_{12}.$

- [1] K. Matsuhira et al., J. Phys. Soc. Jpn. 74 (2005) 1030.
- [2] K. Matsuhira et al., J. Magn. Magn. Mater 310 (2007) 226.
- [3] K. Matsuhira et al., Physica B **378-380** (2006) 235.
- [4] C. Sekine et al., Physica B 359-361 (2005) 856.
- [5] K. Matsuhira et al., The Review of High Pressure Science and Technology 16 (2006) 342.

²Muroran Institute of Technology, Muroran, Hokkaido 050-8585

³Dept. of Phys., Tokyo Metropolitan University, Hachioji, Tokyo 192-0397

⁴Div. Chem., Graduate School of Science, Hokkaido University, Sapporo 060-0810

⁵Div. Phys., Graduate School of Science, Hokkaido University, Sapporo 060-0810

⁶Fac. of Integrated Arts and Sciences, The University of Tokushima, Tokushima 770-8502