Elastic properties of filled skutterudite RFe₄Sb₁₂ (R=La,Ce,Pr)

<u>I. Ishii</u>¹, A. Yamaguchi¹, S. Goto¹, Y. Nemoto^{1,2}, T. Goto^{1,2}, T. Fujita³, I. Mori⁴, H. Sugawara⁴, M. Yoshizawa⁵ and T. Suzuki³

¹Graduate School of Science and Technology, Niigata University, Niigata, 950-2181

The rattling motion, which is an anharmonic oscillation of guest atoms accommodated in polyhedral cages, has been intensively investigated in filled skutterudite compounds, clathrate compounds and so on. The filled skutterudite compounds, such as $PrOs_4Sb_{12}$ [1], and clathrate compounds, such as $Ce_3Pd_{20}Ge_6$ [2] and $Sr_8Ga_{16}Ge_{30}$ [3], show ultrasonic frequency dependence (ultrasonic dispersion) of elastic constants and ultrasonic attenuation. Ultrasonic dispersion in these caged compounds was explained to originate from the rattling motion. To investigate the rattling motion of guest atoms in RFe_4Sb_{12} (R=La,Ce,Pr) systematically, we have measured temperature T dependence of elastic constants and ultrasonic attenuation on RFe_4Sb_{12} single crystalline samples using the phase comparison-type pulse echo method.

For instance, T dependence of elastic constant C_{44} for various ultrasonic frequencies in LaFe₄Sb₁₂ and PrFe₄Sb₁₂ are shown in Figs. 1 and 2, respectively. We found ultrasonic dispersion in all elastic constants, suggesting no mode selectivity of ultrasound, at several dozen Kelvin in RFe₄Sb₁₂ system. These ultrasonic dispersion are estimated to originate from the rattling motion of guest atoms. The temperature and its range of ultrasonic dispersion from 30 to 225 MHz in CeFe₄Sb₁₂ are a little smaller than that in LaFe₄Sb₁₂ and PrFe₄Sb₁₂. In LaFe₄Sb₁₂ and PrFe₄Sb₁₂, softening of elastic constants continues down to 0.4 K.

- [1] T.Goto et al., Phys. Rev. B 69 (2004) 180511.
- [2] Y. Nemoto et al., Phys. Rev. B 68 (2003) 184109.
- [3] I. Ishii *et al.*, Physica B **383** (2006) 130.

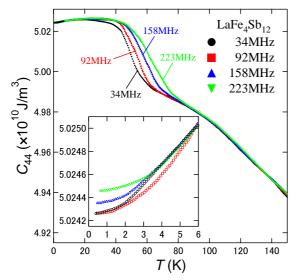


Figure 1: T dependence of elastic constant C_{44} in LaFe₄Sb₁₂.

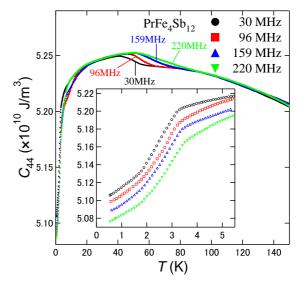


Figure 2: T dependence of elastic constant C_{44} in $PrFe_4Sb_{12}$.

²Center for Quantum Materials Science, Niigata University, Niigata, 950-2181

³Department of Quantum Matter, ADSM, and Institute for Advanced Materials Research, Hiroshima University, Higashi-Hiroshima, 739-8530

⁴Faculty of Integrated Arts and Sciencies, Tokushima University, Tokushima, 770-8502

⁵Graduate School of Engineering, Iwate University, Morioka, 020-8551