High-pressure synthesis and properties of filled skutterudite compounds with group 14 elements in the host network and related compounds

H. Fukuoka

Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527

The filled skutterudite structure is composed of corner sharing MX₆ octahedra and guest atoms, where M and X represent transition metals and pnicogens. When the present study started, only pnicogen atoms can form the host network of filled skutterudite compounds. Therefore, I attempted to prepare a new type compound containing heteroatoms in the host cage, and found that germanium can participate in the host network[1]. The compounds obtained are listed in Table 1. All compounds in Table 1 were prepared by using high-pressure and high-temperature reactions. The susceptibilities of LnM₄Sb₉Ge₃ except for La compounds obey the Curie-Weiss law and the oxidation states of rare earth ions are 3+. They do not exhibit superconductivity to a temperature of 2 K. However, new superconductors were recently discovered by Bauer et al.[2,3] Those became the first compounds of which icosahedral cages are formed only by Ge atoms.

Table 1 includes new skutterudite compounds with alkaline earth metals as well as compounds having anions at the guest ion sites. $I_{1-x}M_4Sb_{12}$ M=Rh and Co are the first examples of anion-filled skutterudite compounds. They can be obtained only if the constituents are reacted under high-pressure and high-temperature conditions.

I have also studied compounds having rare earth ions situated in highly-symmetric sites. CeGe₃ has the famous Cu₃Au structure and exhibits a metallic property.

The mangetic susceptibility, thermoelectric power, and heat capacities for some of these compounds are discussed.

Systems	compounds
$LnRh_4Sb_9Ge_3$	Ln = La, Ce, Pr, Nd, and Eu
$LnCo_4Sb_9Ge_3$	Ln = La, Ce, Pr, Nd
$LnCo_4P_9Ge_3$	Ln = La
$I_{1-x}M_4Sb_{12}$	M = Rh and Co
$BaIr_4P_{12}$	
LnGe ₃ with the Cu ₃ Au type structure	Ln = Ce and Sm
LnGe ₅ with LaGe ₅ type structure	Ln = Ce, Pr, and Nd

Table 1 New compounds obtained in the high-pressure reactions

^[1] H. Fukuoka and S. Yamanaka, J. Alloys Compd. 461 (2008) 547-550.

^[2] E. Bauer, A. Grytsiv, X-Q. Chen, N. Melnychenko-Koblyuk, G. Hilscher, H. Kaldarar, H. Michor, E. Royanian, G. Giester, M. Rotter, R. Podloucky, and P. Rogl, Phys. Rev. Let. 99 (2007) 217001.

^[3] D. Kaczorowski, and V. H. Tran, Phys.Rev. B77 (2008) 180504.