123 Sb-NQR study of PrOs $_4$ Sb $_{12}$ under pressure

S. Kawasaki¹, K. Katayama¹, H. Sugawara², D. Kikuchi³, H. Sato³, and G. -q. Zheng¹

¹Department of Physics, Okayama University, Okayama 700-8530, Japan

²Department of Mathematical and Natural Sciences, Faculty of Integrated Arts and Sciences, The University of Tokushima, Tokushima 770-8502, Japan

³³Department of Physics, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan

We report 123 Sb nuclear quadrupole resonance (NQR) measurements of the filled skutterudite heavy-fermion superconductor $PrOs_4Sb_{12}$ under high pressure. The temperature dependence of NQR frequency and the spin-lattice relaxation rate $1/T_1$ indicate that the crystal-electric-field splitting Δ_{CEF} between the ground state Γ_1 singlet and the first excited state $\Gamma_4^{(2)}$ triplet decreases with increasing pressure[1]. Ac-susceptibility measurements indicate that the superconducting transition temperature (T_c) also decreases with increasing pressure. However, above $P \sim 2$ GPa, both Δ_{CEF} and T_c do not depend on external pressure up to P = 3.82 GPa. These pressure dependences of Δ_{CEF} and T_c suggest an intimate relationship between quadrupole excitations associated with the $\Gamma_4^{(2)}$ level and unconventional superconductivity in $PrOs_4Sb_{12}$. In the superconducting state, $1/T_1$ below $T_c = 1.55$ and 1.57 K at P = 1.91 and 2.63 GPa shows a power-law temperature variations and are proportional to T^5 at temperatures considerably below T_c . These data can be well fitted by the gap model $\Delta(\theta) = \Delta_0 \sin \theta$ with $\Delta_0 = 3.08$ k_BT_c and 3.04 k_BT_c for P = 1.91 and 2.63 GPa, respectively. The results indicate there exists point nodes in the gap function.

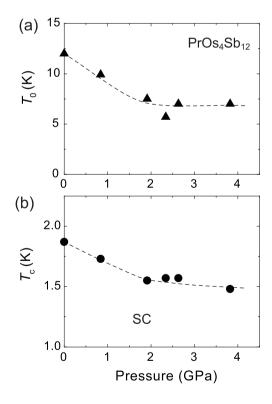


Figure 1: Pressure-temperature phase diagrams for $PrOs_4Sb_{12}$ for T_0 (solid triangles in (a)) and T_c (solid circles in (b)) determined by present results. Dotted curves are eye-guides.