(28b1 = replaced by your program number!)

Crossover behavior in SmRu₄P₁₂

A. Kiss and Y. Kuramoto

Department of Physics, Tohoku University, Sendai, 980-8578

One of the most intriguing behavior left unresolved among filled skutterudites is the understanding of the unusual magnetic field–temperature phase diagram of $SmRu_4P_{12}$. This compound shows a metal–insulator (MI) transition at $T_{\rm MI}=16.5{\rm K}$ which is followed by a subsequent anomaly at T^* . This anomaly shows up as a crossover in thermodynamic quantities, but it becomes sharper as the magnetic field is increased. NMR found that the ordered phase below $T_{\rm MI}$ is magnetic. However, the nature of the order parameter and the crossover behavior around T^* are unclear so far. Yoshizawa proposed the linear coupling between the dipole and octupole moments allowed in the T_h symmetry [1], which can give the crossover behavior of the lower transition at T^* .

We take Yoshizawa's picture and study the crossover behavior due to the mixing of dipole and T^{β} octupole moments. The isotropy and the increase of the MI transition temperature in external magnetic field [2] suggests that SmRu₄P₁₂ is close to the SU(4) interaction limit. Therefore, all multipolar interactions are important in the Γ_8 quartet ground state. First, we consider the crossover behavior by phenomenological Landau analysis. It is shown that the crossover may change to first-order transition through a second-order transition point at a critical value of the external magnetic field if the linear coupling decreases with increasing magnetic field. Proceeding toward crystal field model, higher lying J=7/2 multiplet of Sm³⁺ is taken into consideration in addition to the J=5/2 ground state multiplet. In this way we take into account the T_h symmetry in the Γ_8 quartet. It is found that the linear coupling between the dipole and T^{β} octupole moments caused by the T_h symmetry decreases with increasing magnetic field. This behavior can be responsible for the sharpening of the crossover at T^* as the magnetic field is increased. Renormalization of the linear coupling due to quadrupolar and T^{α} octupolar interaction is obtained under finite magnetic field. Possible range for multipolar interactions in the Γ_8 quartet is estimated and it is set against the SU(4) interaction limit.

References

- [1] M. Yoshizawa et al., J. Phys. Soc. Jpn. **74** (2005) 2141.
- [2] D. Kikuchi et al., Journal of Magnetism and Magnetic Materials 310 (2007) e225.