(27b6)

Knight shift studies of single crystalline $PrOs_4Sb_{12}$

<u>H. Tou</u>¹, M. Doi¹, M. Sera¹, M. Yogi², H. Kotegawa², G.-q. Zheng², Y. Kitaoka², H. Harima³, H. Sugawara⁴, H. Sato⁴

1 - AdSM, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan

2 - Graduate school of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

3 - The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan

4- Department of Physics, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan

Field-Angle-Resolved (FAR) NMR measurements have been carried out for a single crystalline skutterudite superconductor $PrOs_4Sb_{12}$ in order to unravel the novel properties, such as the unconventional superconductivity and field induced order. Figure 1 shows the ¹²¹Sb(I = 5/2)-NMR spectrum for various samples (powder, single crystals with malti-domain #1, singledomain #2, #3). Broadened ¹²¹Sb-NMR spectrum was observed for powder sample. On the other hand, sharp peaks in ¹²¹Sb-NMR spectrum, which are split by nuclear quadrupole interaction, were observed for samples #2 and #3 (single-domain) when a static field H_0 is applied to < 100 > direction ($\theta = 0^{\circ}$). The obtained spectrum is well reproduced by a simulation using previous reported values of $\nu_Q = 44.143$ MHz, $\eta = 0.46$ [1]. For sample #1 (multi-domain), many extra peaks are possible to be assigned by the signals with the field directions for ($\theta = 90^{\circ}$, $\phi = 51^{\circ}$) and ($\theta = 90^{\circ}$, $\phi = 39^{\circ}$). Here θ is angle between H and the z-axis for the principal axes of electric field gradient tensor, and ϕ the azimuthal (Eueler) angle. This is consistent with the prediction from band calculations.

FAR-NMR was carried out for $(5/2\leftrightarrow 3/2)$ and $(1/2\leftrightarrow -1/2)$ lines at fixed frequency f = 100.14 MHz by sweeping field, where the field direction was rotated from $H \parallel < 100 >$ to < 001 > (Figure 2). Both peaks are quite sensitive to the rotational angle and are well reproduced by simulations. For $H \parallel < 100 >$, we measured temperature dependence of ¹²¹Sb Knight shift (KS) at various magnetic fields (H=0.45, 1.35, 9.8 T). The KS not only shows the Curie-Weiss like temperature dependence, but also depends on the strength of applied fields. This behavior is quite similar to the T and H dependence of susceptibility. We will also give brief comments on quasi-particle susceptibility in this system.

[1] H. Kotegawa, M. Yogi, Y. Imamura, Y. Kawasaki, G.-q. Zheng, Y. Kitaoka, S. Ohsaki, H. Sugawara, Y. Aoki, H. Sato, Physical Review Letters, Vol.90, 027001/1-4, (2003).

Figure 1: ¹²¹Sb-NMR spectra in $PrOs_4Sb_{12}$.

Figure 2: Rotational-angle dependence of 121 Sb-NMR spectra in PrOs₄Sb₁₂.