## Crystalline electric field of Pr-based filled skutterudite with $\mathrm{T}_{\mathrm{h}}$ point symmetry

## Y. Isikawa

Department of Physics, Toyama University, Toyama 930-8555, Japan
The point symmetry of $\operatorname{Pr}$ site of the cubic filled skutterudite compound is $\mathrm{T}_{\mathrm{h}}$, which has not four-fold rotation axis. The CEF Hamiltonian with the $\mathrm{T}_{\mathrm{h}}$ symmetry is written as,[1]

$$
\begin{gathered}
H_{C E F}=B_{40}\left(C_{40}+\sqrt{\frac{5}{14}}\left(C_{4-4}+C_{44}\right)\right)+B_{60}\left(C_{60}-\sqrt{\frac{7}{2}}\left(C_{6-4}+C_{64}\right)\right) \\
+B_{62}\left(\left(C_{6-2}+C_{62}\right)-\sqrt{\frac{5}{11}}\left(C_{6-6}+C_{66}\right)\right) .
\end{gathered}
$$

If only the fourth-order terms of CEF Hamiltonian are considered, the energy scheme in the $\mathrm{T}_{\mathrm{h}}$ symmetry is the same as in the $\mathrm{O}_{\mathrm{h}}$ symmetry, and the non-Kramers' doublet $\Gamma_{2,3}$ does not become the ground state. To make the $\Gamma_{2,3}$ state to be the ground state, we have to consider the higher order terms, $B_{60}$ and $B_{62}$, We have examined the effect of the sixth-order terms of CEF, and calculated the eigen values and eigen functions of $\operatorname{Pr}\left(4 f^{2}\right)$ ion splitted by this CEF in two cases, assuming that $B_{40}=100 \mathrm{~K}$ in one case and $B_{40}=-100 \mathrm{~K}$ in the other case. It is noted that the absolute values of $B_{60}$ and $B_{62}$ are less than $\left|B_{40}\right|$, in general.


Figure 1: CEF energy scheme (left), and the phase diagram of the ground state (right) of $\operatorname{Pr}^{3+}$ of $\mathrm{T}_{\mathrm{h}}$ point symmetry, assuming that $B_{40}=100 \mathrm{~K}$.


Figure 2: CEF energy scheme (left), and the phase diagram of the ground state (right) of $\operatorname{Pr}^{3+}$ of $\mathrm{T}_{\mathrm{h}}$ point symmetry, assuming that $B_{40}=-100 \mathrm{~K}$.
[1] K. Takegahara et al, J. Phys. Soc. Jpn. 70 (2001) 1190.

