(28c4)

Low-Temperature Magnetic Properties of the Cage Compound $Pr_3Pd_{20}Ge_6$

H. Amitsuka¹, A. Nogami¹, K. Tenya¹, S. Miyazaki¹, M. Yokoyama², T. Sakakibara³,

- M. Nakayama⁴, N. Kimura⁴, H. Aoki⁴, and T. Komatsubara⁴
- 1 Division of Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
- 2 Department of Materials and Biological Sciences, Faculty of Science, Ibaraki University, Mito 310-8512, Japan
- 3 Institute for Solid State Physics, the University of Tokyo, Kashiwa 277-8581, Japan
- 4 Center for Low Temperature Science, Tohoku University, Sendai 980-8578, Japan

We have measured magnetization $(T \ge 80 \text{ mK}, B \le 9 \text{ T})$ and specific heat $(T \ge 0.36 \text{ K}, B \le 12 \text{ T})$ on the single-crystalline $\Pr_3 \Pr_{d_20} \operatorname{Ge_6}$. This compound crystallizes in the cubic $\operatorname{Cr}_{23}\operatorname{C_6}$ -type structure with space group Fm3m, in which \Pr ions occupy two inequivalent cubic sites 4a (O_h) and 8c (T_d) , sitting at the center of "cages" formed by Pd and Ge ions. Inelastic neutron scattering [1] and high-field magnetization [2] suggest that the crystalline-electric-field (CEF) lowest level of the praseosymium 4f electrons is the quadrupole doublet Γ_3 for both the cites. In addition, the elastic constant $(c_{11} - c_{12})/2$ shows a steep softening with decreasing temperature, followed by a dip anomaly at ~ 0.26 K, suggesting the occurrence of quadrupole ordering [3]. We found magnetic susceptibility showing no tendency to saturate down to 80 mK, and multistep-like anomalies appearing in M(B) below ~ 1 K [4]. No indication of the phase transition was detected in the measured *B*-*T* range. Overall features of the M(B, T) curves and newly studied C(B, T) data are basically explained in terms of a CEF model that assumes the lowest levels at the 8c and 4a sites to be magnetic (Γ_5) and non-magnetic (Γ_3), respectively. There are also significant deviations between the calculations and the experimental data with an energy scale of ~ 0.5 K, which suggest the presence of slight lattice distortion.

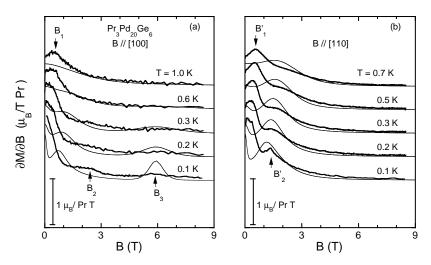


Figure 1: Temperature variations of differential susceptibility of $Pr_3Pd_{20}Ge_6$ for (a) $B \parallel [100]$ and (b) $B \parallel [110]$ (thick lines), compared with the CEF calculations (thin lines).

- [1] L. Keller *et al.*, Physica B **259-261** (1999) 336.
- [2] M. Nakayama *et al.*, Physica B **281&282** (2000) 152.
- [3] T. Horino *et al.*, Physica B **281&282** (2000) 576.
- [4] H. Amitsuka et al., J. Phys. Soc. Jpn. 71 (2002) 124.