High-quality single crystal growth and the magnetism on Ce₃Sn₇

Y. Okuda¹, S. Kirita¹, T. Yamamoto¹, D. Honda¹, H. Shishido¹, A. Galatanu², Y. Haga²
T. Takeuchi⁴, K. Kindo³, K. Sugiyama¹, R. Settai¹ and Y. Ōnuki

- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
- 2 Advanced Science Research Center, Japan Atomic Energy Reserch Institute, Tokai, Ibaragi, 319-1195, Japan
- 3 KYOKUGEN Center, Osaka University, Toyonaka, Osaka, 560-0043, Japan
- 4 Low Temperature Center, Osaka University, Toyonaka, Osaka, 560-0043, Japan

The crystal structure of Ce₃Sn₇ is orthorhombic but is close to tetragonal : a=4.524Å, b=25.742Å, c=4.610Å, which is a superstructure based on the cubic AuCu₃-type CeSn₃. Ce₃Sn₇ is an antiferromagnet with a Néel temperatures of 5.3K. Bonnet *et al.* reported that there are two kinds of Ce sites : magnetic and non-magnetic.¹⁾ Two Ce sites of three Ce sites in Ce₃Sn₇ possess magnetic moments of $0.36\mu_B$ /Ce oriented along the [001] direction (c-axis). A remaining Ce site does not have a magnetic moment as in CeSn₃.

In order to clarify the electronic state we have grown a single crystal and have measured the electrical resistivity, magnetic susceptibility, high-field magnetization, thermal expansion coefficient and de Haas-van Alphen effect, together with the resistivity under pressure.

The single crystal was grown by the Czochralski method. The residual resistivity ratio was about 240. Figure 1 shows the high-field magnetization in msgnetic fields up to 50T, together with the previous data up to 18T.¹⁾ The present magnetization is well explained on the basis of the crystalline electric field (CEF)-scheme mentioned above.

With increasing pressure, the Néel temperatures of 5.3K increases, has a maximum at 1.2GPa, decreases with further increasing pressure and becomes zero about 3.1GPa.

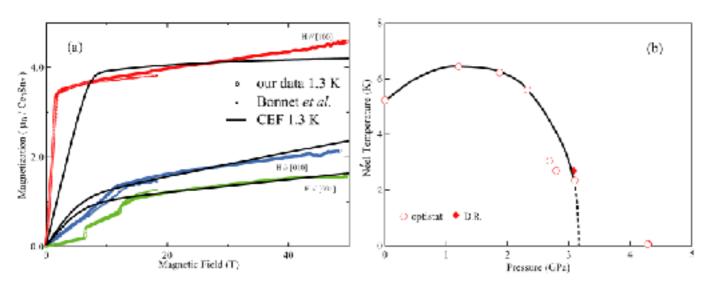


Figure 1: (a) Magnetization and (b) the relation between the Néel temperature and pressure in Ce₃Sn₇

M.Bonnet et al.,: J. Magn. Magn. Mater. 132 (1994) 289-302