Single crystal growth and magnetic properties of a uranium filled skutterudite UFe_4P_{12} <u>T.D. Matsuda</u>¹, A. Galatanu¹, Y. Haga¹, Y. Tokunaga¹, T. Takeuch², K. Sugiyama³, Y. Ōnuki^{1,3}, M. Hedo⁴, Y. Uwatoko⁴ - 1 Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Naka, Ibaraki 319-1195, Japan - 2 Low temperature Center, Osaka University, Toyonaka, Osaka 560-0043, Japan - 3 Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan - 4 Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581, Japan We have succeeded in growing single crystals of a uranium filled skutterudite UFe₄P₁₂ and measured the magnetic properites. The previous report indicates that UFe₄P₁₂ is an insulator but a ferromagnet with a Curie temperature $T_{\rm C}=3.1~{\rm K}$ [1]. Single crystals of UFe₄P₁₂ were grown by the Sn-flux method. The constitutional elements with U:Fe:P:Sn = 1: 4: 20: 50 were inserted in an alminum crucible and sealed in a quartz tube, which was heated up to 1050° C and cooled down with a rate of 1° C/hour, taking one month in total. Figure 1 shows a single crystal with $1.5 \times 1.5 \times 1.5 \text{ mm}^3$. The flat planes correspond to the (100), (110), (111), and (130) planes. The field dependence of magnetization is shown for magnetic fields along [100], [110], and [111] derections. These results indicate that an easy-axis corresponds to [100]. The magnetic moment is $0.8\mu_{\rm B}/{\rm U}$. Figure 1: Single crystal of UFe_4P_{12} . Fig. 2 Magnetization curves of UFe₄P₁₂. [1] R.P. Guertin, C. Rossel, M.S. Torikachvili, M.W. McElfresh, and M.B. Maple, Phys. Rev. B 36 (1987) 8665.