High-field magnetization of Pr-skutterudite compounds

K. Sugiyama^{1,2}, T. Yamamoto¹, D. Honda¹, T. Takeuchi³, K. Kindo², H. Sugawara⁴, Y. Aoki⁴, H. Sato⁴ and Y. Ōnuki¹

- 1 Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- 2 Research Center for Material Science at Extreme Conditions, Osaka University, Toyonaka, Osaka 560-8531, Japan
- 3 Low Temperature Center, Osaka University, Toyonaka, Osaka 560-00431, Japan
- 4 Department of Physics, Graduate School of Science, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan

We have measured the high-field magnetization in single crystalline samples of $PrOs_4Sb_{12}$, $PrFe_4P_{12}$ and UFe_4P_{12} . The magnetization of $PrOs_4Sb_{12}$ in the field along the $\langle 100 \rangle$ at 0.1 K shows a small kink around 5 T. This phenomenon was explained by the crystalline electric field (CEF) model including the quadrupole interaction. [1].

The magnetization of $PrFe_4P_{12}$ in the field along the $\langle 100 \rangle$ at 1.3 K shows a metamagnetic transition at $H_c = 4$ T. Above H_c , the magnetization is slightly anisotropic among three directions of $\langle 100 \rangle$, $\langle 110 \rangle$ and $\langle 111 \rangle$.

The magnetization of a ferromagnet UFe_4P_{12} is highly different from those of $PrOs_4Sb_{12}$ and $PrFe_4P_{12}$. The magnetization above 5 T is flat, not increasing with increasing the field. We will discuss the CEF-scheme including the exchange and quadrupole interactions among three compounds.

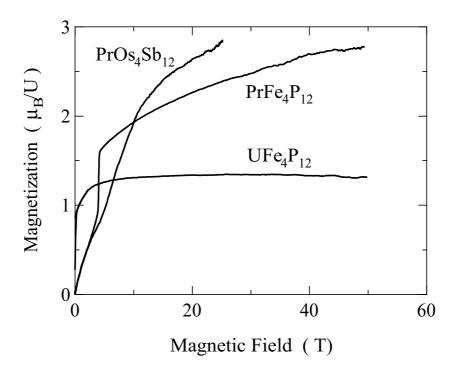


Figure 1: The magnetization curves of PrOs₄Sb₁₂, PrFe₄P₁₂ and UrFe₄P₁₂.

[1] M. Kohgi, K. Iwasa, M. Nakajima, N. Metoki, S. Araki, N. Bernhoeft, J.-M. Mignot, A. Gukasov, H. Sato, Y. Aoki and H. Sugawara, J. Phys. Soc. Jpn. **72** (2003) 1002.