(PS27)

Anomalously huge resistivity peak under pressure in CeRhGe

<u>T. Ueda</u>¹, R. Asai¹, H. Shishido¹, T. C. Kobayashi², A. Galatanu³,

- Y. Haga³, R. Settai¹ and Y. Onuki^{1,3}
- 1 Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
- 2 Research Center for Materials Science at Extreme Conditions, Osaka University, Toyonaka, Osaka, 560-8531, Japan
- 3 Advanced Science and Industrial Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki, 319-1195, Japan

CeRhGe crystallizes in the TiNiSi-type orthohombic structure (space group Pnma), which is characterized that the Ce atoms line up a quasi-one dimensional zigzag chain along the aaxis. We have measured the electrical resistivity under pressure up to 2 GPa. The resistivity at ambient pressure decreases monotonously below a Néel temperature $T_{\rm N} = 10$ K [1]. With increasing pressure, the resistivity has a peak around $T_{\rm N}$, which is anomalously enhanced up to 1.2 GPa. With further increasing pressure, the resistivity peak is diminished and $T_{\rm N}$ becomes zero at a critical pressure $P_{\rm c} = 1.9$ GPa [2]. We suppose there is a possibility that this resistivity peak is characteristic for an antiferromagnet with a spin density wave. The Avalue of the resistivity ρ in the Fermi liquid relation of $\rho = \rho_0 + AT^2$ is also found to increase with increasing pressure and has a maximum at $P_c = 1.9$ GPa. ρ_0 also increases with increasing pressure and has a maximum at 1.3 GPa.

Recently, we have succeeded in growing single crystals of CeRhGe, and measured the electrical resistivity and magnetic susceptibility, which are highly anisotropic.

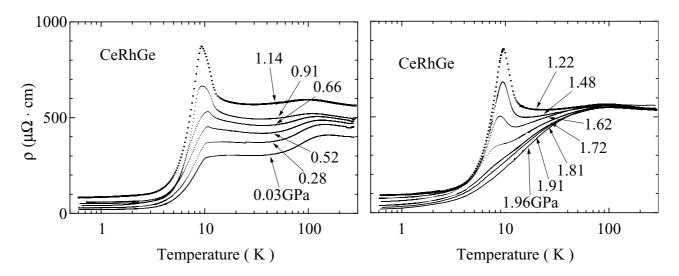


Figure 1: Temperature dependence of the electrical resistivity under pressure in CeRhGe.

- [1] P. Rogl, B. Chevalier, M. J. Besnus, J. Etourneau
- J. Magn. Magn. Mater. 80 (1989) 305.
- [2] R. Asai, A. Thamizhavel, H. Shishido, T. Ueda, Y. Inada, R. Settai,
- T. C. Kobayashi and Y. Onuki
- J. Phys. Condens. Matter 15 (2003) L463-L468.