Crystalline electric field in UFe₄P₁₂ <u>T. Takeuchi</u>^{1,4}, T. D. Matsuda², A. Galatanu², Y. Haga², K. Sugiyama^{3,4}, K. Kindo⁴, Y. Ōnuki^{2,3} - 1 Low Temperature Center, Osaka University, Toyonaka, Osaka 560-0043, Japan - 2 Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan - 3 Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan - 4 Research Center for Materials Science at Extreme Conditions, Osaka University, Toyonaka, Osaka 560-8531, Japan Recently, Matsuda et al. succeeded in growing single crystals of some uranium-based skutterudite compounds [1]. Among them, UFe₄P₁₂ is known as a small-gap semiconductor and to show the ferromagnetic order below $T_{\rm C}=3.15$ K [2]. We have measured the specific heat, magnetic susceptibility and high-field magnetization in the single crystalline sample of UFe₄P₁₂ in order to clarify the crystalline electric field for a comparative study of U- and Pr-based skutterudite compounds. Figure 1 shows the high-field magnetization at 1.3 K for $H \parallel [100]$. The magnetization shows a ferromagnetic behavior at low fields and saturates above 20 T with a saturation moment of about 1.3 $\mu_{\rm B}/{\rm U}$. The inverse susceptibility for $H \parallel [100]$ follows the Curie-Weiss law in the temperature above 300 K with the effective moment $\mu_{\rm eff} \sim 3~\mu_{\rm B}/{\rm U}$ and the paramagnetic Curie-Weiss temperature $\Theta_{\rm p}=$ -98 K, as shown in the inset of Fig. 1. We analyzed these data by the crystalline electric field model, assuming a 5f² electron configuration for U ions. Figure 1: High-field magnetization curve at 1.3 K for H \parallel [100]. The inset shows the temperature dependence of the inverse susceptibility for H \parallel [100]. [1] T. D. Matsuda et al., PS26 in this poster session. [2] H. Nakotte, N. R. Dilley, M. S. Torikachvili, H. N. Bordallo, M. B. Maple, S. Chang, A. Christianson, A. J. Schultz, C. F. Majkrzak, G. Shirane, Physica B **259-261** (1999) 280.